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Abstract

An adjoint data assimilation system has been developed to assimilate coastal subtidal water level data into a
hydrodynamic model. In this system, a linear two-dimensional Princeton Ocean Model with an orthogonal curvilinear
grid system is used as the forward model. The wind drag coefficient is used as a convenient control variable
(approximately representing errors in the forecasting wind fields that are usually the primary cause of errors in model-
produced water levels). The cost function is defined in terms of the water level misfits between the observations and
model outputs. The limited memory Broyden—Fletcher—Goldfarb—Shanno (BFGS) quasi-Newton method for large-
scale optimization is implemented to minimize the cost function. Identical twin experiments with model-generated
pseudo-observations are performed and the results show that the true solution of the control variable can be recovered
efficiently by assimilating pseudo-observations at limited locations into the model. The results from actual subtidal
water level data assimilation experiments show that the simulated subtidal water levels with data assimilation are better
than those without data assimilation even if only one control variable is used. The results from the experiment with 16
control variables demonstrate that the correlation coefficients are greater than 0.93 and the RMS errors are less than
5.3cm at 18 coastal water level gauge stations. The nowcast/forecast experiments demonstrate that the subtidal water
level forecasts are improved by water level data assimilation in the first 6h. The average RMS error of the subtidal
water level forecasts over the 18 water level gauge stations is reduced by 3 cm. Crown Copyright © 2002 Published by
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Water levels and currents play an important role
in the coastal exploitation, navigation and man-
agement (for example, maritime traffic manage-
ment, response to oil spills, fisheries, tourism,
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recreational sports). Generally, two factors affect
water level variation. The first factor is astronom-
ical tides which are produced by the gravitational
attraction of the moon and sun acting upon the
rotating earth. The second is nontidal water level
variation which is primarily generated by the
surface wind, but also includes the effects of
changing atmospheric pressure and changing
water density (due to changing temperature and
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salinity). Astronomical tidal prediction has been
studied for decades and tidal prediction using
either harmonic or response technique is quite
accurate in most cases. For over a century,
mariners who needed information on water
levels and currents have had to rely on astronom-
ical tide and tidal current prediction tables.
However, tide and tidal current predictions
cannot tell mariners what the real water levels
and currents will be in the future due to not
including the often important effects of winds,
river flow, atmospheric pressure, or water density.
These nontidal effects could sometimes be sig-
nificant and completely overwhelm the tidal
signal. Real-time observing systems provide
mariners with instant information on the total
water levels and currents which is more accu-
rate than tidal predictions, but such informa-
tion cannot be provided into the future nor
at locations other than those that are instru-
mented.

Numerical models have been widely applied to
simulations of coastal ocean circulation. Several
marine nowcast/forecast model systems for coastal
zones and estuaries have been developed and are
running in experimental mode: Coast Ocean
Forecast System (Aikman et al. 1996); Experi-
mental Real-Time North Pacific Ocean Nowcast/
Forecast System (Kuo, personal communication);
Lower Columbia River Nowcast/Forecast Systems
(Baptista et al., 1998); Chesapeake Bay Opera-
tional Forecast System (Gross et al., 2000). These
nowcast/forecast model systems not only provide
water level forecast at particular locations, but
they also have the advantage of providing spatially
varying two-dimensional water level forecasts,
and/or three-dimensional current forecasts. Sensi-
tivity experiments using numerical models are also
helpful for researchers to understand the physical
oceanographic dynamics of some special phenom-
ena. However, even the highest resolution ocean
circulation model cannot resolve all of the
dynamically important physical processes in the
ocean. There are always some processes that are
not represented directly (Malanotte-Rizzoli and
Tziperman, 1996), but rather are parameterized.
These tunable parameters (i.e. various eddy
coefficients, surface wind drag coefficients, bottom

friction coefficients, etc.) are always uncertain both
in form and value. Many of the parameters are
also often difficult to measure directly. However,
oceanographic data in the interior of the domain
can be used to help estimate the undetermined
parameters. The combination of a model and data
for determination of the poorly known model
parameters and for improvement of the ocean
model performance can be formulated as an
optimization problem. Such an optimization
would search for a set of model parameters and
for an optimal ocean state which together satisfy
the model equations and fit the available data as
well as possible. This may be done by formulating
a cost function, which represents the differences
between the model results and the observations.
The cost function is minimized, with the model
governing equations as strong constraints, by
adjusting the control variables using uncon-
strained optimization algorithms (such as the
conjugate gradient method and the limited mem-
ory quasi-Newton method) which require the
gradients of the cost function with respect to the
control variables. The estimation of these para-
meters therefore becomes an extremely compli-
cated optimization problem which needs to be
carried out using efficient methods and powerful
computers.

In recent years, the adjoint technique has been
developed and widely applied in meteorological
and oceanographic fields, especially for data
assimilation, model tuning, model sensitivity
analysis, and parameter estimation. The adjoint
approach with the governing equations as strong
constraints was described by Sasaki (1970), who
gave a framework that is readily applicable to a set
of steady- or unsteady-state equations. Bennett
and Mclntosh (1982) and Bennett (1985) used the
adjoint variational method to determine the open
boundary conditions in a tidal model and array
design. Yu and O’Brien (1991, 1992) used the
adjoint method in a one-dimensional vertical
model to estimate the wind stress drag coefficient,
the oceanic eddy viscosity profile, and initial
conditions from observed velocity observations.
Panchang and O’Brien (1989) applied the ad-
joint variational method to a one-dimensional
hydraulic model to determine the bottom friction
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coefficients in a tidal river. Das and Lardner
(1991) and Lardner (1993) implemented the
adjoint method for a two-dimensional tidal
model to determine the bottom friction coefficients
and water depths from periodic tidal data.
Similarly, Lardner et al. (1993) estimated the
bottom drag coefficient and bathymetry correction
for a two-dimensional tidal model of the Arabian
Gulf. Lardner and Song (1995) used the adjoint
method in the optimal estimation of viscosity
and friction coefficients for a quasi-three dimen-
sional numerical tidal model. Seiler (1993) used
the adjoint method to estimate open boun-
dary conditions for a quasi-geostrophic ocean
model.

Those studies about the adjoint technique are
mainly concerned with studying the method rather
than applying it to real oceanic conditions and
operational oceanic nowecasts/forecasts. In this
study, we develop the adjoint model of the two-
dimensional linear Princeton Ocean Model
(POM), and apply it to subtidal water level data
assimilation. The assimilated data consists of
water levels at 18 water level gauge stations along
the US East Coast. Since the surface wind has
the predominant effect on the subtidal water
level variation along most of the US East Coast,
wind drag coefficients are chosen as the control
variables. (This is merely a convenient way to
correct water level differences due to errors in
the forcing wind fields, and should be viewed
as a first step in a water level assimilation
methodology. This simplification forces other
errors, e.g., in the barometric pressure, water
temperature, etc., to be treated as wind field
errors.) The forward equations and the adjoint
equations of the two-dimensional POM are
described in Section 2. In order to verify and
evaluate the adjoint model, identical twin experi-
ments are conducted and the corresponding results
are presented in Section 3. The application of
the adjoint model to actual observed East Coast
subtidal water level data is described in Section 4.
Section 5 presents the results of the subtidal
water level forecasts by including the water level
data assimilation technique in the nowcast/fore-
cast system and conclusions are described in
Section 6.

2. Numerical model
2.1. Forward model

The adjoint method requires substantial com-
puter resources to perform numerical computa-
tion. In order to make the operational real-time
water level nowcast/forecast system as efficient as
possible, the barotropic two-dimensional POM
(Blumberg and Mellor, 1987) is linearized by: (1)
neglecting the variation of water level surface
elevation £ relative to water depth (D = H), which
is reasonable for the depths over most of model
regime; (2) neglecting the horizontal advection and
diffusion terms (F, and F,); (3) linearizing the
bottom friction terms (which is also reasonable for
the depths over most of the regime) with a
constant bottom friction coefficient, C, = 1073,
Thus, the linearized two-dimensional continuity
and momentum governing equations are as follows:
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where 4, U and V are surface elevation and
horizontal velocities, f is the Coriolis parameter,
H is the water depth at rest, C; is the wind drag
coefficient, W is the surface wind speed, and W,
and W, are surface wind components in the x and
y directions.

An orthogonal curvilinear horizontal model grid
(Fig. 1) with resolution ranging from 5 km near the
coast to 30 km in the deep waters is implemented.
The bathymetry in the model domain (shown in
Fig. 2) is based on the DBDBS5 (National Geo-
physical Data Center, 1985) gridded 5’ bathymetry
except in coastal regions (water depth less than
200m) where the NOS15 gridded 15” (National
Geophysical Data Center, 1988) bathymetry data
are used because of better resolution and accuracy
of bottom topography and coastal geometry.
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Fig. 1. Model grid. I and J are horizontal grid index in the x and y directions, respectively.

The model is driven by surface atmospheric
pressure and Eta Data Assimilation System
(EDAS)-analyzed surface wind fields (Black, 1994;
Rogers et al., 1995) which are bilinearly inter-
polated to the model grid.

2.2. Cost function and control variables

The optimal adjoint method attempts to find a
set of undetermined parameters (i.e., control
variables) to minimize the cost function in a
least-squares sense over a given period of time
(the window of data assimilation). Thus, the first
task is to define a suitable cost function for a given
problem. In a general sense, the cost function
measures the differences between the observations

and the numerical model results. With the
increasing ability to acquire real-time water level
observations along the coast, it is feasible to
assimilate real-time observed water levels into a
numerical model to improve water level nowcasts
and the forecasts initialized with those nowcasts.
In this study, we focus on how well the simulated
subtidal water levels can be improved by assim-
ilating the observed subtidal water levels into the
numerical model using an optimal control data
assimilation technique. According to the studies of
Courtier and Talagrand, 1990, Zou et al. (1992)
and Lardner et al. (1993), it is necessary to add
penalty terms in the cost function expression to
suppress the high-frequency variations in the state
variable simulations and solution of the optimal
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Fig. 2. Bathymetry in the model domain (in meters) and water level gauge locations from the National Water Level Observation

Network.

control variables. The cost function is therefore
defined as
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where 7, and /y, are observed and simulated
subtidal water levels at time step n of the ith tide
gauge; W; is the corresponding weighting factor

(taken as 1.0 in this study) and M is the number of
observation stations. The second and third terms
are the penalty terms which measure the variances
in time and space of the optimal Cy. C; and /) are
the new and previous control variable values, N, is
the total number of the control variables, and 7y,
and y, are weighting coefficients which represent
the relative influence of these penalty terms and
are empirically determined.

From sensitivity experiments, we found that the
surface wind forcing has a predominant effect on
the low-frequency subtidal water level variations
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along the East Coast. We have therefore chosen
the wind drag coefficient as a convenient control
variable in the optimal adjoint data assimilation
process. This selection essentially assumes that
errors in the model-produced subtidal water levels
will most likely be due to errors in the wind stress
field and that these wind field errors can be
approximately represented by changes in the wind
drag coefficients. This simple approach forces
other (usually much smaller) errors in water level,
e.g., caused by errors in the barometric pressure,
water temperature, etc., to be treated as though
they were caused by wind field.

There may really be errors in model-based-
analyzed or -forecasted wind fields. Fig. 3 shows a
comparison between the observed winds and the
EDAS winds interpolated to the corresponding
model grid points of Eastport, CBBT, Duck and
Cape Hatteras. It shows that, in general, the
EDAS winds match the observed winds in speed
and direction reasonably well at CBBT, Duck, and
Cape Hatteras and less well at Eastport during this
period. The EDAS wind speed is smaller than the
observational wind speed and the direction de-
viates from the observation during the strong wind
periods. The wind direction deviation plays an
important role in variation of subtidal water level
along the East Coast, which is very sensitive to
wind direction. Wind observations from a moored
buoy 44014 (at 36.58N, 74.83W), which is located
very close to CBBT, were also compared with the
EDAS interpolated winds. The results also showed
that the EDAS wind direction deviates from the
buoy measured wind, and the wind speed of the
buoy observation is greater than that of the EDAS
winds during the strong wind events. In addition
to the errors in surface wind fields, it is possible
that there really could be errors in the wind drag
coefficient, since its behavior as wind speed
increases is still not well understood, especially at
high wind speeds. A problem with the wind drag
coefficient can also occur if the effect of atmo-
spheric stability is not included in its formulation,
in which case, changing air and water temperature
could affect wind stress in an unaccounted manner.

The most widely applied wind stress formula-
tion at the sea surface may be conveniently
expressed in terms of the wind speed at the 10-m

level, the air density, and a nondimensional drag
coefficient as

Ty = paCal W10l W o (5)

for the formulation developed by Large and Pond
(1981),

\ 1.2
10°C, = .
0.49 + 0.065| W 1|

4<|W /<11 m/s,
11<|W|<25m/s.
(6)

The problem of evaluating the surface wind stress
is therefore reduced to estimating the drag
coefficient, C,, at different wind speeds if the
10-m level winds and air density are known. Most
estimates of C; have been obtained by indirect
observations. The dependence of C; on wind speed
has not been completely resolved, even for the
lower wind speed. Thus, in this study, by
assimilating the observed subtidal water level into
the numerical model, it is possible to improve the
wind stress field estimates by adjusting the wind
drag coefficient C;, to produce the most accurate
simulated subtidal water levels.

Eq. (6) shows that surface wind drag coefficient is
a temporally and spatially variable parameter (since
wind speed varies in time and space). However, due
to the limitation of available water level stations
(number and spatial distribution), the wind drag
coefficient is assumed to be constant in space, in
each of one or more pieces of the model domain
within 24h. Since order of magnitude of C; is
about 1073, for the purpose of convenience and
computational accuracy, Cy is scaled by a factor of
103 (i.e., the scaled C* = C; x 10%). Hereafter, the
scaled C} is still written as Cy.

2.3. Adjoint equations

The adjoint method is efficient for calculating
the gradient of a cost function with respect to
control variables. Since the adjoint model is
dependent on the forward model and its discreti-
zation method, the construction of an adjoint
model seems very complicated (e.g., POM usually
employs orthogonal curvilinear grid and several
smoothing techniques in time and space discretiza-
tion). The adjoint model equations can be derived
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Fig. 3. Comparison of the observed and EDAS-analyzed surface winds at Eastport, CBBT, Duck and Cape Hatteras in October, 1996.
Solid arrows, observations and open arrows, EDAS-analyzed surface winds.

by different methods: the Euler—Lagrange method
(Morse and Feshbach, 1953); the control theory
method (Le Dimet and Talagrand, 1986); and the
Lagrange multiplier approach. Discrete adjoint
equations can be derived by discretizing the conti-
nuous adjoint equations, or derived directly from

the discrete forward numerical model code. The
direct derivation of adjoint discrete equations from
model code can avoid the inconsistency that may
arise from the derivation of the adjoint model by dis-
cretization due to noncommutativity of the adjoint
model and discretization operations (Spitz, 1995).
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In this study, we develop the discrete adjoint
model of the linear two-dimensional POM directly
from its discrete model equations using the
Lagrange method. A complete derivation of the
adjoint equations is very lengthy and can be found
in Zhang et al. (2002). For clarity, we write the
adjoint equations and gradient formulation here in
continuous notation as

a)“u A aih o

H 5 —fHAU+H6x+Cb/1u—0, ()
02y 04

H=t 4 fHi, + HZ+ Cyhy = 0, (8)
ot oy
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The corresponding adjoint variables are defined
as follows: /; is the adjoint variable of &, A, is
the adjoint variable of U, and 4, is the adjoint
variable of V, respectively. The gradient of cost
function with respect to the control variable is
given as

oJ

G :m = Ju| Wil Wy + 2| Wi | W,
+ Vl(cdk - C}l:() - yZ(Cd/\»” - Cdk)a
k=1,...,N.. (10)

By comparison between the forward and the
adjoint equations, it can be found that the adjoint
equations have the following properties: (1) no
wind forcing terms are included in the adjoint
equations because the wind drag coefficients are
used as the control variables; (2) data misfits are
added to the adjoint equations as forcing terms;
and (3) the adjoint equations are similar to the
forward model equations, but the bottom friction
terms in the adjoint equations have opposite signs
to that of the corresponding governing equations.
This implies that the adjoint equations have to be
integrated backward in time. Note that no matter
how many control variables are there in the
adjoint data assimilation scheme, the gradient
components of the cost function can be computed
after integrating the adjoint model once. The
adjoint equations demonstrate that the adjoint
model integration has an approximately equiva-
lent computational expense as the integration of its

forward model. Thus, the adjoint model provides
an efficient method for -calculating gradient
components of a cost function which are used in
the optimization process, especially for the case
with the large number of control variables.

The following procedure of the iterative optimal
data assimilation scheme which is applied to all the
following data assimilation experiments is de-
scribed as:

(1) Run the forward numerical model for 24h
(data assimilation window is set to be 24 h in
the present study) with initial values of the
control variables, and save the simulated
elevations at the corresponding tidal gauge
locations at each hour.

(ii) Calculate the data misfits and cost function.

(ii1) Run the adjoint model backwards in time
forced by data misfits to calculate the adjoint
variables 4j, A,, 4,, and then calculate the
gradient of the cost function with respect to
the control variables.

(iv) Employ the limited memory Broyden—Fletch-
er—Goldfarb—Shanno (BFGS) quasi-Newton
minimization algorithm (Liu and Nocedal,
1989) to calculate the optimal control vari-
able estimates.

(v) Check whether the convergence criterion,
|Gl <e or J<e (e = 107%), is satisfied. If yes,
the iteration is stopped. Otherwise, steps
()—(v) are repeated with the new parameter
estimates.

(vi) Rerun the forward numerical model with the
optimal wind drag coefficients.

3. Model verification

The performance of a forward model (which
should include all dynamical processes) is very
important to a data assimilation system. In order
to evaluate the linear numerical model and
compare with the nonlinear two-dimensional
POM, the linear and nonlinear numerical models
were integrated with the same surface wind forcing
for the period of 09/01-31/12/1996, during which
there were several hurricanes and storm events.
The simulated wind-driven (hereafter called
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subtidal) water levels (in Fig. 4) show that the
differences of the simulated subtidal water levels
between the linear and nonlinear models are
insignificant in this model domain. The sensitivity
experiments demonstrate that the differences in the
simulated subtidal water levels along the East
Coast between the linear and nonlinear numerical
models are mainly caused by the linearization of
the bottom friction terms. Impacts of the hor-
izontal advection and diffusion terms on subtidal
water level simulation are negligible. Therefore, it

Eastport

is reasonable to implement the linear two-dimen-
sional model as a more efficient replacement for
the nonlinear one.

In comparison, the observed subtidal water
levels (filtered by a 30-h Fourier low-pass filter)
are also plotted in Fig. 4. The simulated subtidal
water levels from the linear model are in good
agreement with observations at most water level
gauge locations. The RMS errors of the simulated
subtidal water levels range from 8 to 15cm. The
correlation coefficients between the observed and

—— Observation
------- Nonlinear 2-D POM
— — Linear 2-D POM

Water Levels(m)

-0.3

INALY e

245 255 265 275 285 295

305 315 325

335 345 355 365

Time (days, 1996)

Fig. 4. Time series of observed and simulated subtidal water levels with the nonlinear and linear two-dimensional POM at water level
gauge locations from 09/01 to 12/30/1996. See Fig. 2 for the locations.
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Fig. 4 (continued).

simulated subtidal water levels vary from a
maximum of 0.91 at Willets Point and New
London to a minimum of 0.54 at Cape Hatteras.
Between Portland and Sandy Hook, the simulated
subtidal water levels agree with the observed
subtidal water levels very well during hurricane
events. Near Cape Hatteras, the simulated subtidal
water level does not follow the observations well.
The latter result is consistent with those of Wang
(1979) and Noble and Butman (1979), who
pointed out that Gulf Stream effects contribute

to significant sea level fluctuations at Cape
Hatteras.

In order to examine the response of subtidal
water levels along the East Coast to surface wind,
some model sensitivity experiments were per-
formed with steady winds as forcing. The results
show that, after reaching a steady ocean state,
westerly and northwesterly winds push water away
from coast and drop water levels over the
continental shelf of the East Coast. Easterly and
southeasterly winds pile water up and raise water
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levels along the East Coast. Northeasterly winds
can raise the water levels south of Atlantic City
and lower the water levels north of Atlantic City.
Southeasterly winds lower the water levels south of
Atlantic City and raise the water levels north of
Atlantic City. Southerly winds raise the water
levels north of Cape Hatteras and lower the water
levels south of Cape Hatteras. The comparison of
the observed subtidal water levels with wind
observations (Figs. 3 and 4) shows that easterly
and northeasterly winds dominate at CBBT, Duck
and Cape Hatteras from Julian days 280 to 282,
water is therefore piled up at CBBT. After that,
the wind becomes westerly and northwesterly
which lowers the water levels.

The correctness of an adjoint code and the
converging rate of the optimization process are
critical to the success of an adjoint model. Any
error in the adjoint model code can result in wrong
information for computations of the gradient of
the cost function, and then the optimization
process may fail to find a reasonable optimal
parameter estimation. Therefore, the code of the
adjoint model must be verified to ensure that the
gradient of the cost function is correctly calculated
by the adjoint model. The most useful method is to
use gradient of the cost function to check the
correctness of the adjoint model equations. This
involves perturbing each of the control variables
by an appropriate small amount AC; and inte-
grating the forward model to calculate the change
in the cost function with respect to the correspond-
ing control variable. The derivative of the cost
function at any point of C,; of the parameter space
can be calculated by a finite-difference (FD)
method. The gradient calculated from an adjoint
model should be consistent with that calculated
using the FD method within the order of AC,. The
number of the control variables is limited due to
the limitations of the number and spatial distribu-
tion of the available water level stations in this
study and computational cost. Three cases are
therefore considered: one with one control vari-
able, one with eight control variables, and one
with 16 control variables. For the one control
variable case, the wind drag coefficient is specified
as a constant over the entire model domain within
a data assimilation window (24 h). For the eight

control variable case, the model domain is evenly
divided into eight subregions along the J direction
of the model grid (see the thick lines in Fig. 1). The
wind drag coefficient in each subregion stays
constant within a data assimilation window and
is counted as a control variable. For the 16 control
variable case, as an extension of the eight control
variable case, the wind drag coefficients in the [/
and J directions are expressed as two different
control variables (Cz and Cgy) in each subregion.
The penalty terms in Eq. (4) are not considered in
the following twin experiments. The results from
the gradient verification experiments of the three
cases show that the gradients of the cost function
computed using the FD method and the adjoint
method are very close in magnitude and consistent
in sign. For the case with eight control variables,
the maximum difference of the gradient compo-
nents between the FD method and the adjoint
method during the 30 consecutive days is
1.33x107°, and the maximum gradient norm
difference is 1.44 x 107>, This demonstrates that
the adjoint model developed in this study can
provide correct gradient information for the
optimization process. The most useful tool to
verify and evaluate the performance and feasibility
of the adjoint data assimilation procedure is the
identical twin experiment. In which, pseudo-
observations are generated by the numerical model
itself with a predetermined control variable so they
are not contaminated by any error and contain the
same dynamics as the numerical model, and any
kind of the pseudo-observations can be sampled.
Another merit of the identical twin experiment is
that the true values of the control variables are
already known, we therefore can examine whether
or not the optimal control variables converge to
their true values. Thus, the identical twin experi-
ment is the best situation for data assimilation,
and for that reason it is widely used to evaluate
and verify the performance of a developed adjoint
data assimilation system. A set of identical twin
experiments using perfect and contaminated pseu-
do-observation is performed for the case with one,
eight and 16 control variables, respectively. Similar
results are obtained from these twin experiments
as follows: (1) the values of the optimal C,
converge towards their true solutions very fast
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during the first several iterations; (2) no matter
how far the initial guesses of the control variables
are away from their true solutions, the value of the
cost function and the norm of the gradient drop
rapidly in the first several iterations, and the values
of the optimal C; are very close to their true
solutions after about 10 iterations and all of the
optimal C; components gradually converge to
their true solutions; and (3) the noise added to the
pseudo-observations has significant impacts on the
control variable estimations of the optimization
process, i.e., observational noise inhibits the
optimal C; from converging to their true solu-
tions. The twin experiments demonstrate that
“true” solutions of control variables can be
efficiently recovered by assimilating coastal water
level gauge data into a hydrodynamical model if
other model parameters are perfect.

4. Assimilation of real subtidal water level data

The identical twin experiments demonstrated
that the true values of the wind drag coefficients
can be recovered by assimilating the pseudo-
observations into the numerical model. In this
section, the same three cases as the identical twin
experiments with one, eight and 16 control
variables were performed to assimilate the real
subtidal water levels from water level gauges along
the US East Coast. And the results with data
assimilation are compared with those without data
assimilation (C; computed using Eq. (6), and the
experiment is denoted as PA_NoDA).

4.1. Data and numerical scheme

Hourly water level observations from 18 water
level gauge stations of National Water Level
Observation Network (NWLON) were filtered
with a 30-h low-pass Fourier filter to remove the
astronomical tidal signal to obtain the observed
subtidal water levels. The EDAS-analyzed surface
wind fields from the National Centers for Envir-
onmental Prediction (NCEP) in the National
Weather Service (NWS) were used as surface
forcing of the numerical model.

The forward model was first spun up for 10 days
from rest with the wind drag coefficient Cjy
calculated from the formulation developed by
Large and Pond (Eq. (6)) to create initial fields
for the adjoint data assimilation system. The
variational adjoint data assimilation was then
continuously performed for 50 days (09/10-10/
30/1996) with a 24-h data assimilation window.
The optimal values of the C; from the previous
day were used as the initial guess for the following
day’s data assimilation. After obtaining the
optimal C; the forward model was reintegrated
for 24h with the optimal C,;. A new initial field
was then created and saved at the end of each day,
and is used as the initial condition for the
following day’s simulation.

4.2. Data assimilation results without penalty terms

For the moment, the penalty terms in Eq. (4) are
not considered. The time series of the optimal
wind drag coefficients from three cases are
presented in Figs. 5(a)—(c). For the case with one
control variable (denoted as PA_NoPT1), the
optimal values of C; vary from —5.0 to 6.0. The
negative values of C; indicate that the wind stress
direction is changed to the opposite to that of the
surface wind in order to minimize the cost
function. For the case with eight control variables
(PA_NoPT?2), the optimal values of C; for each
subregion varies with time and seems to be
uncorrelated with the others. This may be caused
by the definition of the eight control variables, but
it is not unexpected since the changes in C; are
made to compensate for assumed errors in the
wind fields. The absolute values of the optimal C,
are generally less than 20.0. However, the variance
of each optimal C, is greater than that of the one
control variable case. Some of the optimal Cy
seems to be unreasonably large compared with the
wind drag coefficients calculated with Eq. (6).
However, the magnitude of the cost function is
reduced significantly with the optimal C,; from this
experiment. This may indicate that the magnitude
and/or direction of the surface wind stresses are
not accurate enough so that the numerical model
cannot simulate the subtidal water level well
compared with the observations. In order to
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Fig. 5. (a) Time series of optimal values of C; from the experiment PA_NoPT1 (one control variable). (b) As Fig. 5a, but for the
experiment PA_NoPT?2 (eight control variables). (c) As Fig. 5a, but for the experiment PA_NoPT3 (16 control variables). (—) Cyy; (---)

Cyy.

minimize the cost function, wind stresses have to
be adjusted by changing the wind drag coefficients
which are used in the wind stress computation. For
the case with 16 control variables (PA_NoPT3),
the optimal wind drag coefficient components Cyy
and Cy, are not only different in magnitude but are
also occasionally opposite in sign. From Eq. (5) we
know that only when Cy is equal to Cg, will the
wind stress direction remain in the same direction
with the surface wind. So the optimal Cy, and Cg,
allow the wind stress direction calculated with the
optimal Cy, and Cy, to deviate from that of the

surface wind. If both C, and C, are positive, the
wind stress direction is off from the wind direction
less than 90°. However, if C; and Cgy, are both
negative, the wind stress direction can be totally
opposite to the wind direction.

Time series of the cost function for the three
cases are presented in Fig. 6. In general, the values
of the cost function with data assimilation are less
than those without data assimilation, and the
values of the cost function from 16 control
variable case are smallest. This demonstrates that,
in the sense of minimizing the cost function, the
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best results are obtained from the case with 16
control variables. It also indicates that allowing
wind stress direction changes in the data assimila-
tion procedure improves the accuracy of the
simulated subtidal water level.

Time series of the subtidal water levels (Fig. 7)
show that even if only one constant control
variable in the entire model domain is used in
the adjoint data assimilation process, the simu-
lated subtidal water levels at 18 stations are closer
to the observations than those without data
assimilation. The results from PA_NoPT2 show
that the simulated subtidal water levels are much
closer to the observed subtidal water levels than
the results of the one control variable case. The
simulated subtidal water levels from the 16 control
variable case match the observations very well for
most stations both in amplitude and phase, even
during strong wind periods.

The correlation coefficients and RMS errors for
the case without data assimilation and for the
three cases with data assimilation are presented
in Fig. 8. The correlation coefficients of the case

without data assimilation are the lowest and vary
from 0.5 to 0.88. The correlation coefficients for
the case with 16 control variables are the highest
among these four cases and vary from 0.93 to 0.98.
The RMS errors without data assimilation are the
largest except at the St. Augustine station (which is
already small) and vary from 6 to 14cm. The RMS
errors of the case with 16 control variables are the
smallest and vary from 3.3 to 5.3 cm.

From wind drag coefficient laboratory experi-
ment studies, we know that the wind drag
coefficient is related to the wind speed, and
therefore wind drag coefficient varies in space
and time. Since we have allowed the changes of the
optimal C; to represent changes in the original
winds to improve the simulated subtidal water
levels along the coast, we can expect a variation in
the calculated optimal values of C; over space and
time, and which will then be correcting for a
variety of wind data problems (and possibly other
problems as well). Since eight wind drag coeffi-
cients might represent the spatial variations of
wind stress better than one control variable, the
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Fig. 6. Time series of cost function for the experiments with and without data assimilation.

simulated subtidal water levels from PA_NoPT2
are closer to the observed subtidal water levels
than that from PA_NoPTIl. In addition to
optimizing the wind stress magnitude, 16 control
variables also allow to adjust the wind stress
direction by any angle (higher degree of wind
correction compared with the eight control vari-
able case), therefore the simulated subtidal water
levels are further improved with respect to
PA_NoPT2. The more the control variables used
in the data assimilation procedure, the better the
results should be. However, it must also be noticed
that more control variables require more observa-
tions to be assimilated into the model in order to
obtain better optimal control variables, which, in
turn, make the simulated results match the
observations better. Only if there are adequate
representative water level gauge stations, more
control variables can be used in the data assimila-
tion process. The relationship between the mini-
mum number of stations and the number of
control variables depends on the spatial and
temporal distribution of the observations (Zhang
et al.,, 2002) and could be examined with the
identical twin experiments.

The results from the above experiments show
that the values of the cost function with data
assimilation decreased as expected. However,
some optimal values of C; appeared to be very
large (for typical C; values) and/or even negative,
perhaps indicating a physically unrealistic solu-
tion. Such “abnormal” optimal values of C; may
be attributed to several possibilities: (1) There
really are errors in the EDAS-analyzed wind fields
(wind speed and wind direction, whatever the
causes), and the wind field errors were corrected by
changing the optimal wind drag coefficients (the
negative value of C; would be obtained if the wind
direction was wrong). (2) Our inherent basic
assumption has been that all errors in the
simulated subtidal water levels are produced by
the errors in the surface wind, and errors in the
wind fields are corrected and represented by
changes in wind drag coefficients. However, errors
in the simulated water levels due to the other
conditions and parameters (initial condition, open
boundary condition, surface air-pressure field,
nonlinear effects, and the other tunable para-
meters) will also be projected onto the control
variables. This could result in an ‘“‘abnormal”
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Fig. 7. Time series of the observed and simulated subtidal water levels with and without data assimilation.

value of the optimal C; if the assumption was
invalid. (3) Due to limitations in available water
level stations, Cy is assumed to be constant, either
throughout the entire domain (one control vari-
able case) or in each subregion (eight and 16
control variable cases), but the true spatial
variations of C; may not be properly represented
in the model. (4) The penalty terms are not
considered. The minimization of the cost function
alone does not ensure that the adjoint data
assimilation technique obtains reasonable values

of the optimal control variable in the physical
sense. The constraint conditions and penalty terms
may be necessary to obtain more reasonable values
of the optimal control variables.

4.3. Effects of the penalty term and the smoothness
of control variable

The purpose of adding the penalty term to the
cost function is to smooth and stabilize the
estimates of the control variables. The estimates
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of the control variables from the cost function
without penalty terms are indeed solutions satisfy-
ing the desired objective of minimizing the misfits
between the model output and the observations,
but they are rapidly varying in space and time.
Thus, they are probably not desired solutions in
physical and realistic respects. Our goal is to seek a
balance between the misfit minimization and the
solution smoothness. The first objective must
dominate the latter, and the role of the smoothing
terms must be kept to a minimum so that the real

structural features of the estimated control vari-
ables can be preserved to the greatest extent. The
influences of these two objectives are regulated
through the weighting coefficients. Therefore, two
penalty terms are added in the cost function
formulation with weighting coefficients y; and y,.
Three additional experiments using 16 control
variables were performed with different weighing
coefficients (see Table 1 for the values of y; and v,
for the three cases: PA_PT1, PA_PT2, and
PA_PT3), and the corresponding results are
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Fig. 8. Comparison of correlation coefficients and RMS errors between the observed and simulated subtidal water levels from the
experiments with and without data assimilation.

Table 1

Weighting coefficients of y; and y,

Case name 7 7
PA_NoPT3 0.0 0.0
PA_PTI 0.001 0.001
PA_PT2 0.0025 0.0025
PA_PT3 0.005 0.005
compared with those from the experiment

PA_NoPT3 without penalty terms.

Time series of the optimal Cy, (similar results
for Cy) from the four experiments are shown in
Fig. 9. It can be seen that the time series of the
optimal Cy, from the three experiments with
penalty terms are very similar, and they are much
smoother than that without penalty term
(PA_NoPT3). With the penalty terms, the spatial
and temporal variations of the optimal C, are
smoothed, and the extremely large values in the

optimal C,; were eliminated. Thus, adding the
penalty terms to the cost function appears to lead
to a more physically realistic depiction of the
optimal wind stress fields. Fig. 10 shows that, with
the penalty terms, the correlation coefficients
decrease and the RMS errors increase at the water
level gauge stations. The differences of correlation
coefficients and RMS errors between the cases
with and without penalty terms are no more than
0.1 and 2cm, respectively. This indicates that the
realistic structural features of the subtidal water
levels are preserved, while the estimated optimal
values of C; are smoothed. According to our
experiment results, the most acceptable results
would be those obtained from PA_PT1 (using the
smallest y; and 7,), since almost same pattern of
the optimal C, is obtained as that from PA_PT2
and PA_PT3 but the RMS errors are closest to that
without penalty terms (although not very close for
stations CBBT, Springmaid and Charleston). It is
worth noting that the iteration number for each
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Fig. 9. Time series of optimal values of C, for the data assimilation experiments with penalty terms. (—) PA_NoPT3; (---) PA_PT1;
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24-h data assimilation is reduced by 50% with the
addition of the penalty terms, thus reducing
the model computational time. The effects of the
penalty terms on subtidal water level forecasts will
be discussed in the following section.

5. Subtidal water level forecasts
One important purpose of the data assimilation

scheme is to improve subtidal water level forecasts
in the coastal region by providing better initial

conditions for the forecasting model. Therefore, a
24-h nowcast/forecast system is configured. In this
system, the forward model is run for 10 days to
create restart files for the first nowcast/forecast
run. The nowcast model is run for 24 h (forced by
the EDAS-analyzed wind fields) to create an initial
field for the forecast model. The forecast model is
then run for the next 24 h forced by Eta forecast
wind fields from NCEP/NWS from the initial
fields created by the nowcast model. It is noted
that the forecast model utilizes the same model
grid, bathymetry and open boundary condition
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Fig. 10. Correlation coefficients and RMS errors between the observed and simulated subtidal water levels from the data assimilation
experiments without penalty terms (PA_NoPT3) and with three different weighting size penalty terms (PA_PT1, PA_PT2, and

PA_PT3). See Table 1.

formulations as the nowcast model. The five nowcast/
forecast experiments (Table 2) were devised and
continuously performed for the period from 09/11/
1996 to 12/31/1996 (110 days), and the subtidal water
level forecasts are used in the statistical analysis.

We are concerned with how much improvement
of the subtidal water level forecasts is made by
using the data assimilation technique in the
nowcast/forecast system and how long the im-
provement could last. The subtidal water level
forecasts for each hour of a 24-h forecast cycle
over the 110-day period are sampled (110 data
point for each forecast hour) and compared with
the corresponding observations. The variations of
the average correlation coefficient and RMS error
over the 18 stations with forecast time for these
experiments are presented in Fig. 11. For the
experiment without data assimilation (SWL_F1),
the average RMS errors vary with forecast hour in
the range from 9.8 to 13 cm. The average correla-

Table 2
Wind drag coefficients used in the nowcast and the forecast
modes for subtidal water level nowcast/forecast experiments

Case name C; for nowcast C, for forecast
mode mode

SWL_F1 Eq. (6) (no data Eq. (6)
assimilation)

SWL_F2 Optimal C,; from Eq. (6)
PA_NoPT3

SWL_F3 Optimal C; from Same Cy, as the
PA_NoPT3 nowcast

SWL_F4 Optimal C; from Eq. (6)
PA_PTI

SWL_F5 Optimal C; from Same Cy, as the
PA_PTI nowcast

tion coefficients vary in the range from 0.75 to 0.8.
Both the average RMS errors and correlation
coefficients do not change much as the forecast
hour increases. For the experiment with data
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Fig. 11. Average correlation coefficients and RMS errors for each forecast hour between the observed and forecasted subtidal water
levels over 18 stations from the nowcast/forecast experiments. See Table 2 for expanation of five cases shown.

assimilation in the nowcast (without penalty
terms) but using the Large and Pond formulation
for C; (Eq.(6)) in the forecast (SWL_F2), the
RMS errors are about 3cm less than for SWL_F1
in the first 2h and 0.5 cm less from hour 3 to hour
11. When the forecast time is greater than 11h,
differences of the RMS errors between SWL_F1
and SWL_F2 are insignificant. For the experiment
with data assimilation but applying the optimal C,
of the previous day to the next 24h forecast
(SWL_F3), the RMS errors are slightly smaller
than that of SWLF2 in the first 4 h. However, the
RMS errors then increase very fast and they are
even much larger than that of SWILF1 when the
forecast time is greater than 6h. These results
indicate that, on the average, the improvement of
subtidal water level forecasts by applying the data
assimilation without penalty terms is mostly
limited to the first 3h. After 3 h, the improvement
in the subtidal water level forecasts is insignificant.
The subtidal water level forecasts made by
extending the optimal C,; of the previous day’s
nowcast to the following day’s forecasts become
even worse than those without data assimilation

after the S5th hour. By introducing penalty terms
into the cost function formulation (SWL_F4 and
SWL_FS5), the RMS error becomes smaller than
that of SWL_F2, and they are about 3 cm smaller
than that of SWL_F1 in the first 5h. For SWL_F35,
the RMS errors become larger than that of
SWL_F1 after about 8 h. The results of SWL_F3
and SWL_FS5 indicate that the value of the optimal
C,; from the previous day’s nowcast cannot be
simply applied to the next day’s forecasts. Is was
expected that the adjustment to C; correct for
errors in the changing wind field would vary day to
day, but the size of such adjustments is apparently
large enough so that trying to use one day’s
calculated C,; for the following day is actually
worse than sticking with the Large and Pond Cj,
at least a few hours into the forecast.

The average improvement percentage of sub-
tidal water level forecasts by the data assimilation
technique over 18 stations for each forecast hour is
calculated as

_ RMSyyps — RMSp,

P ——
RMSnopa

100%,

(11)
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where P is average improvement, RMSy,p, and
RMSp, are the average RMS errors without
(SWL_F1) and with data assimilation, respectively.
Fig. 12 indicates that the percentage of SWL_F2
(without penalty terms) decreases faster than that
of SWL_F4 (with penalty terms). A drop to a 10%
improvement takes place in the first 3h for
SWL_F2 and in the first 9h for SWI_F4. The
improvement of SWL_F4 is greater than that of
SWL_F2. Therefore, adding the penalty terms in
the cost function formulation to smooth optimal
wind drag coefficients leads to the most improved
forecast results.

The RMS errors of the subtidal water level
forecast from SWIF4 as a function of forecast
hour at the 18 stations are listed in Table 3. The
RMS errors in 24-h forecast cycle are less than
14 cm except at Springmaid, Charleston and Fort
Pulaski, and are generally less than 10cm during
the first 6 h. The maximum RMS error of 21 cm
occurred around Charleston, South Carolina after
20h. However, the RMS errors of the nowcast
near Charleston (see Fig. 10) are not significantly
larger than those of the other stations. In
examining the Eta forecast and EDAS-analyzed
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surface wind fields (Fig. 13), we found that the Eta
forecast and EDAS-analyzed wind fields are very
different near Charleston during Julian days 320-
322, 328-329 and 360-362. In those days, the wind
forecasts produced extremely large subtidal water
level forecasts at Charleston, Springmaid and Fort
Pulaski, which were different from the observa-
tions and resulted in the large RMS errors in that
region.

6. Conclusions

A water level data assimilation system based on
the two-dimensional linear POM for the East
Coast of the United States has been developed to
improve subtidal water level simulation through
adjusting the wind drag coefficient by dynamical
assimilation of subtidal water levels into the
numerical model. The simulated wind-driven
subtidal water levels from the linear two-dimen-
sional POM are in good agreement with the
observed subtidal water levels at coastal water
level gauge stations. The only exception is at Cape
Hatteras, probably due to the effect of the Gulf
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Fig. 12. Average improvement percentage in subtidal water level forecasts (Eq. (11)) by applying water level data assimilation with and

without penalty terms.
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Table 3

1931

RMS errors for each forecast hour at 18 water level gauge stations based on 110 days subtidal water level forecasts with the experiment

SWL_F4. See Fig. 2 for names of water level stations

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 6.6 6.6 6.2 43 4.8 4.1 56 4.6 6.1 5.2 8.0 7.5 7.0 8.8 8.3 7.3 69 6.8
2 74 6.8 7.0 4.8 5.3 4.6 6.0 5.6 7.6 6.4 9.0 7.4 8.0 102 10.7 9.4 9.0 72
3 74 12 7.3 5.6 6.3 5.5 6.9 8.1 8.6 7.5 103 8.6 94 11.6 125 123 95 15
4 78 1.5 8.2 6.7 7.7 6.9 8.4 9.3 6.8 7.5 9.5 107 10.0 139 142 143 93 172
5 84 8.0 8.3 7.4 9.5 82 10.1 8.6 7.0 7.2 94 109 108 155 16.1 145 95 173
6 8.0 8.2 8.4 79 109 8.8 109 8.8 7.6 7.8 9.8 11.1 10.6 149 150 144 102 74
7 72 18 8.9 85 108 9.6 10.8 9.3 8.1 86 102 112 104 145 154 152 104 73
8 7.0 7.8 8.8 8.8 108 9.6 10.5 9.7 8.3 89 106 11.2 108 147 165 153 100 7.4
9 6.6 73 8.9 9.0 109 9.4 105 108 8.6 88 106 11.5 109 149 169 148 100 7.6

10 70 73 8.3 93 10.7 9.6 107 114 9.1 89 108 11.8 11.2 158 169 141 103 7.7

11 74 1.5 8.4 94 105 9.8 10.7 11.6 9.1 93 109 123 11.3 171 17.6 150 10.7 8.0

12 75 19 8.6 9.6 108 10.1 10.7 11.7 9.7 9.9 113 123 116 179 184 168 112 82

13 79 83 9.3 98 112 106 11.0 11.8 10.1 10.1 1l1.6 125 11.8 17.6 187 177 11.7 83

14 83 85 9.6 99 114 107 114 122 100 101 11.7 13.0 121 174 190 18.0 12.1 8.4

15 9.2 87 93 103 115 11.1 11.7 129 103 104 11.5 134 124 172 195 181 122 83

16 9.6 9.0 9.6 106 119 116 11.7 131 109 109 11.8 135 125 174 195 185 121 83

17 9.5 92 99 107 123 119 11.8 130 113 IL.1 121 134 126 17.6 193 185 12.1 8.5

18 9.6 92 104 107 125 119 120 128 11.5 114 121 136 127 179 195 185 125 8.7

19 10.1 93 108 10.6 125 11.8 124 129 11.7 11.7 121 138 129 185 204 189 13.1 88

20 106 94 107 104 123 11.5 124 13.0 11.7 11.7 120 139 129 189 212 193 134 9.0

21 11.0 96 107 105 121 114 122 128 119 11.8 120 138 129 189 213 19.7 135 89

22 1.2 96 108 10.7 119 114 119 126 121 121 121 137 129 189 21.1 200 133 89

23 114 98 11.1 106 119 114 11.7 125 121 122 120 136 129 187 21.0 20.0 135 9.1

24 1.5 98 112 107 11.8 11.3 1l.6 124 120 122 120 137 129 186 21.1 20.1 140 9.1

Stream which is not included in the model. This
shows that in the US East Coast region surface
wind forcing is the predominant factor in low-
frequency water level variations.

The correct gradient of the cost function is
efficiently obtained by the adjoint approach. A set
of identical twin experiments with model-gener-
ated pseudo-observations shows that the true
solution of the control variable can be exactly
recovered for both single and multiple control
variable experiments, even if the first guess of the
control variable is far from its true solution. The
rate of convergence is very fast, taking only a few
iterations. The identical twin experiments also
show that water level observational errors affect
the convergence rate and performance of the
minimization procedure.

The performance of the adjoint data assimila-
tion system in the application using real water level
data indicates that the simulated subtidal water

levels with data assimilation have been improved
even with one control variable. From comparison
among a number of the experiments, it is found
that the most accurate simulated subtidal water
levels are obtained from the experiment with 16
control variables (using x and y pairs in eight
regions). In this case, the correlation coefficients
are greater than 0.93 and the RMS errors are less
than 5.3cm at 18 water level gauge stations. This
experiment demonstrates that both the magnitude
and direction of wind stress need to be adjusted in
order to minimize the cost function. The penalty
terms should also be included in the cost function
to assure the smoothness of the estimated optimal
wind drag coefficients in space and time. Results
from the experiments with the penalty terms
indicate that the estimated optimal values of Cy
are smoother in space and time than that without
the penalty terms. However, the RMS error
differences between the simulated subtidal water
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Fig. 13. Comparison between the EDAS-analyzed and Eta-forecasted wind fields for two different times (left panels, 11/16/1996; right
panels, 12/27/1996). Upper panels are EDAS-analyzed wind fields. Lower panels are Eta-forecasted wind fields.

levels with and without penalty terms are generally
very small except near Charleston. Thus, adding
the penalty terms leads to smoother solutions that
still preserve the physical features of subtidal water
levels. In addition, water level forecasts were
improved when penalty terms were used in the
nowecasts that were used to initialize the following
forecasts

The nowcast/forecast experiments demonstrate
that the average RMS errors of the subtidal water
level forecasts over the 18 water level gauge

stations without data assimilation vary from 8.8
to 12cm, and the average correlation coefficients
vary from 0.76 to 0.81. The most of the improve-
ment in the subtidal water level forecasts by
applying data assimilation into the nowcast/fore-
cast system occur within the first 6h, with no
significant differences between the water level
forecasts with and without data assimilation
thereafter. This indicates that the impact of the
initial conditions from the nowcast on the next
day’s forecast is limited to the first 6h. The
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optimal values of C; from the previous day’s water
level data assimilation cannot be directly applied
in the next day’s water level forecasts due to the
changes in the surface wind fields. These optimal
values may only be reasonably extended about
3—6h into forecasts. More experiments should be
performed to find a way of predicting the next
day’s C; based on the optimal values of C; of the
previous day in order to improve the next day’s
water level forecast.

Due to the limitation in the number and spatial
distribution of the available water level observa-
tions (the real-time water level data are available at
only 18 water level gauge stations within the model
domain), a large number of control variables could
not be used in the data assimilation process. Sea
surface height data from satellite altimeters might
help to alleviate this limitation. Combining water
level gauge observations, which are long-term and
frequently sampled in time, with the altimetry
data, which cover wide spatial arecas but are
infrequently sampled in time, could possibly
improve the resolution of the wind drag coeffi-
cients, and then improve the accuracy of nowcast/
forecast systems.
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