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Abstract

In this paper, the two-dimensional Princeton Ocean Model (POM) (Blumberg and
Mellor, 1987; Mellor, 1998) is implemented to simulate wind-driven subtidal water
levels along the U.S. East Coast. The model is forced by a 48km ETA Data
Assimilation System (EDAS) analyzed wind field.  An optimal adjoint variational
data assimilation  technique is presented to assimilate the subtidal water levels
sampled  along the entire Atlantic Coast of the U.S. into the numerical model. In the
optimal data assimilation procedure, the subtidal water level misfit is defined as the
cost function.  The gradient of cost function is determined by the adjoint model.
Limited memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton (Liu and
Nocedal, 1989) method for large scale optimization is implemented to minimize the
cost function.  The data assimilation system was tested in ideal twin identical
experimental cases in which the pseudo-observations are generated by numerical
model with predefined wind drag coefficients (Cd).  The results show that the wind
drag coefficients can be recovered from subtidal water levels very accurately by using
this adjoint optimal data assimilation system.

1. Introduction

In recent years, data assimilation techniques based on optimal control methods
have been developed and widely applied in meteorologic and oceanographic fields.
As early as 1970's, the adjoint approach with the governing equations as strong
constraints was described by Sasaki (1970a,b) which gave a framework that is readily
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applicable to a set of steady or unsteady state equations.  Yu and O’Brien (1991) used
a variational adjoint method in a one-dimensional vertical model to estimate the wind
stress drag coefficient and the oceanic eddy viscosity profile from observed velocity
data.  Schwab (1982) used the inverse method to estimate wind stress from water
level fluctuations. Das and Lardner (1991) implemented the adjoint method to 

Fig. 1. U.S. East Coast subtidal water level forecast system, (a) computational
grid; (b) tide gauge locations and bathymetry.

determine the bottom friction coefficient and water depth which are position
dependent parameters from periodic tidal data.  Panchang and O’Brien (1989)
applied adjoint state formulation to a one-dimensional hydraulic model to determine
the bottom friction factor for a tidal river. Chu et al. (1997) determined open
boundary conditions with an optimization method, in which a multiperturbation
method is proposed to determine the gradient of cost function.  Thus, his method is
independent of the ocean model and can be easily applied to  linear and nonlinear
ocean models.  But for the case of a large number of control variables, the
multiperturbation method for determining the gradient of the cost function is time
consuming.

With POM being widely used by more and more oceanographers (Aikman et al
1996; Mellor and Ezer 1991; Ezer and Mellor 1997) and variational adjoint
techniques being successfully applied in many fields, it is possible and necessary  to
develop an adjoint model of POM in order to efficiently perform data assimilation.

For the purpose of water level forecasting, a subtidal water level forecast system
for the U.S. East Coast is under development which uses the two dimensional
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barotropic Princeton Ocean Model with orthogonal curvilinear model grid (Fig.1).
Grid resolution ranges from 5 to 32 km. The model is forced by a 48km EDAS
analyzed wind field.  An objective of this system is to forecast subtidal water levels
along the East Coast and to provide water level forecasts as the open boundary
condition for other regional or bay forecasting systems. With the ability to acquire
real-time water gauge observations along the coast, it is now feasible to assimilate
real time observed water levels into a numerical model, using the optimal control
data assimilation technique in order to improve water level nowcasts and subsequent
forecasts.  From the sensitivity experiments of subtidal water level simulation, we
found that the surface wind plays a predominant role in causing the subtidal water
level variation in this area.  Thus wind drag coefficients are chosen as the control
variables in the data assimilation.  The  idea is based on  the assumption that the
forecast wind field is not accurate enough (and its resolution is also too coarse
compared with the ocean model grid resolution), hence causing the water level
misfits between observed and simulated water levels.  For convenience we use a
change in wind drag coefficients to represent (and correct for) systematic “errors” in
the wind field.  However, it is possible that there really could be errors in the wind
drag coefficient, since its behavior as wind speed increases is still not well
understood, especially at high wind speeds.  A problem with the wind drag
coefficient can also occur if the effect of atmospheric stability is not included in its
formulation, in which case, changing air and water temperature could affect wind
stress in an unaccounted for way.  Thus, by assimilating  the observed subtidal water
level into a numerical model, it is possible to improve the wind field by adjusting the
wind drag coefficients. In reality, surface wind drag coefficients are position-
dependent parameters. In this paper, for the sake of simplification, the forward model
is linearized, and the wind drag coefficients are assumed as constant or  piecewise
constants.  Pseudo-observations generated by the numerical model with predefined
wind drag coefficients are used in a twin identical experiment.  The real observed
subtidal water levels are obtained from total observed water level by a 30-hour low-
pass Fourier filter. 

2. Forward Numerical Model 

2.1 Fully Two-dimensional POM Governing Equations

The governing equations of two dimensional POM are given as follows: 
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where H, τs and τb are water depth at rest, wind stress and bottom friction, and
D=H+η  total water depth, g the acceleration due to gravity, f the Coriolis parameter,
ρ the water density.  And the horizontal viscosity and diffusion terms Fxand Fy are
defined as
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where AM, the vertically integrated horizontal eddy viscosity, is defined by the
Smagorinsky formula 

(6)A C x y V VM

T= ∇ + ∇∆ ∆ 1
2

C, a non-dimensional parameter, is set to be 0.2 in this study; ∆x and ∆y are the grid
spacings in the x and y directions for each grid cell. 

Table 1. RMS Errors and Correlation Coefficients at 15 East Coast Locations
          

Statio
n

Mean_ob 
  (cm)

Mean-M   
       (cm)  

RMS
(cm)  

RMS (demean)  
   (Cm)

Correla Correla (Demean)

Newl 5.13        -1.08                        10            8                  0.80
       0.91

Brid 6.41         2.98           12           11                  0.92       
0.91

Montk 5.54         4.86            8            8                  0.90       
0.90
Willets 7.53         4.65           15           15                  0.91       
0.91
S H. 6.76        -2.51           11            9                  0.79       

0.87
Atlantic 8.03       - 0.45           13            9                  0.77       
0.89
Lewes 7.54        -1.89           13          10                  0.62       
0.84
Kipt. 7.83        -1.48           13           8                  0.53       

0.80
Glou. 7.93         1.36           12           9                  0.67       

0.77
CBBT 8.36        -1.37           14          10                  0.55       
0.79
Duck 9.38        -0.59           14          10                  0.52                      

 0.68
Cape 7.79        -1.01           12           8                  0.28       

0.54
Spring 10.6         0.47           13           8                  0.60       
0.75
Char. 11.5         0.24           14           8                  0.55       

0.73 
Mayport 13.2         2.27           16          11                  0.71       
0.75
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First, the fully nonlinear two-dimensional POM is used to  evaluate numerical
model subtidal water level simulation at 15 selected locations.  The model simulates
a period from Sep. 1 to Oct. 31, 1996. During this period, there were three hurricanes
that occurred in Sep. 16-18, Oct. 7-9, and Oct. 16-20, respectively.  The EDAS
analyzed wind fields were used  as the surface forcing. Wind stress  is calculated
using a formula developed by Large and Pond (1981).  The results (Fig. 2)  show that
the variation trends of simulated water levels with time match that of observations
fairly well at most locations most of the time. Mean values, correlation coefficient
and Root Mean Square (RMS) of the differences between the observed and the
simulated subtidal water levels are presented in Table 1.  Note that there are mean
value differences between the observed and the simulated subtidal water levels.  The
simulation mean value  is lower than that of observation at most locations.  The
demeaned RMS errors  range from   8 cm to 15 cm, the correlation coefficients
between observed and simulated subtidal water levels vary from maximum 0.91 at
Willets Point and New London to minimum 0.54 at Cape Hatteras.  There are
differences between the observed and simulated subtidal water levels even during the
weak wind period. These differences are because the 2-D model forced by surface
wind was run for only two months, so some low-frequency signals in the observed
subtidal water levels which are  caused by other factors were not represented in the
simulated subtidal water levels.  This includes steric effects on water level due to
water temperature change, which are not included in the model, as well as Gulf
Stream effects on the southern stations.
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Fig.2. Comparison of observed and simulated subtidal water levels without data
 assimilation at NOS tide gauge locations.
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2.2 Linearized Governing Equations

To simplify the adjoint model development, the fully nonlinear two-dimensional
POM is linearized by: (1) neglecting the variation of water level surface elevation η
relative to water depth (D=H), which is reasonable for the depths over most of model
regime; (2) neglecting the horizontal advection and diffusion terms (Fx and Fy); (3)
linearizing the bottom friction terms (which is also reasonable for the depths over
most of the regime) with a constant bottom friction coefficient, .Cb = × −10 10 3.
Thus, the linearized 2-D POM governing equations are as follows,
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     The model is integrated from rest, and radiational open boundary conditions are
used on the southern boundary.  The results of the linearized POM (Fig. 2)
demonstrate that, for subtidal water level simulation, the linearized 2-D POM gives
results similar to those of the fully nonlinear 2-D POM. Therefore, it is reasonable
to implement the linearized 2-D POM to simulate subtidal water levels for this
coastal ocean area.

3. Adjoint Equations of Linearized 2-D POM

 The adjoint method is increasingly being implemented in data assimilation,
model tuning, and model sensitivity analysis. It provides an efficient method for
calculating the gradients of cost function with respect to control variables (especially
in the case of large number of control variables).  However, the adjoint equations
depend on the forward equations, and derivation of adjoint equations is complicated.
Zhu et al. (1997a) simply described the construction of an adjoint model for the 2-D
barotropic model of Institute of Atmospheric Physics of China (IAP) and applied it
to estimate the open boundary conditions of a tidal model (Zhu et al., 1997b).  Ralf
and Kaminski (1996) and Ralf (1997) proposed a helpful and basic textbook on how
to construct adjoint code from forward model code using a tangent linear compiler
(TLC).  However, in this particular application, it is difficult to determine what the
formula is to calculate the gradient from the adjoint variables.  In some occasions,
TLC may even generate redundant statements in the adjoint code. Here, as an
example for the linearized 2-D POM with well-posed initial and open boundary
conditions , the procedure for deriving adjoint equations is presented in continuous
notation. 
    In oceanic numerical modeling we are often confronted with some unknown or
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undetermined parameters, e.g., initial conditions, open boundary conditions, friction
coefficients, wind drag coefficients, etc.  In this study, we are concerned with
nontidal elevation data assimilation.  Since wind stresses play the most important role
in nontidal elevation simulation, the surface wind drag coefficient Cd is chosen as the
control variable.

The basic procedure in the variational adjoint method consists of minimizing a
cost function that represents the misfits between observed data and model output. 
This minimization is performed subject to the strong constraints of satisfying the
governing equations.  The constraint minimization involves Lagrange multipliers and
leads to additional equations (known as adjoint equations) from which Lagrange
multipliers are determined.  The model state variables and Lagrange multipliers are
used to compute the cost function and its gradient from which the cost function is
minimized to obtain the optimal control variables.
      In this variational problem the cost function is defined as,

(10)J W h h dx dy dto
xyt

= −���
1
2

2( )

where ho and h are observed and simulated elevations and W is the weighting factor.
The variational problem is to minimize cost function J subject to equations (7)-(9).
Introducing Lagrange multipliers λh, λu, λv for the constraint governing equations (7),
(8), (9) (Lawson et al, 1995), the first variation of the cost function J can be written
as 
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The corresponding adjoint variables are defined as follows: λh is the adjoint variable
of h, λu is the adjoint variable of U, and λv is the adjoint variable of V, respectively.

Considering the specific case defined above, using wind drag coefficients as the
only control variables,  Eq. (11) can be rewritten as, after applying the chain rule and
integrating by parts,
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Since the initial conditions and boundary conditions are well-posed for this specific
case described earlier, we have
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Therefore, the last three terms of (12) are zero if the initial values (t=T) of λu, λv, and
λh are forced to be zero.  By forcing the coefficients of the non-control variables (δh,
δU, δV) to zero, we obtain adjoint equations as follows,
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The above process showed that cost function minimization has resulted in new
equations (13)-(15) which are called  adjoint equations.  And the adjoint variables are
calculated by integrating the adjoint equations.  The gradient of the cost function with
respect to the control variable, wind drag coefficient Cd, can be computed by   

(17)( )G U U U V dxdydtu w w v w w
xyt

= +��� λ λ

It is shown from (17) that, if Cd varies spatially and temporally, the gradients of cost
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function with respect to Cd can be computed by integrating the adjoint model once
regardless of the number of control variables.

By comparison with 2-D forward POM equations, it is seen that the adjoint
equations (13)- (15) are similar to their original model equations (7)-(9).  The
differences between forward and adjoint equations are:  no wind stress forcing terms
are included in adjoint  equations because the wind drag coefficient is defined as
control variable; the data misfit (h-ho) is added to adjoint  equation as a forcing term;
the friction terms in the adjoint equations and the corresponding governing equations
have opposite signs.  This implies that the adjoint equations have to be integrated
backwards in time starting from zero values at the final time step. 

An iterative scheme for a 24-hour data assimilation is given in Fig.3.

Fig. 3.  Flow Chart for a 24-Hour Water Level Data Assimilation Run

4. Identical Twin Experiments

In order to check the performance of adjoint optimal data assimilation technique,
identical twin experiments are usually considered. In twin experiments, the pseudo-
observed water level data are generated by the numerical model. This is the best
situation for data assimilation since the pseudo-observational data  contain the same
dynamics as the numerical model and are not contaminated by any error.  In this
study, the pseudo-subtidal water levels are generated by integrating the model with
a constant or piecewise constant predefined wind drag coefficient over the entire
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domain and hourly subsampled  at 15 selected locations.  With a known initial
condition from the model spin-up and the radiation formula implemented on southern
open boundary, three cases are devised in the one- and 30- day data assimilation
simulations.  These are:

Case 1: pseudo-observations contain no errors,
Case 2: pseudo-observations at all locations are contaminated with a random

white noise which has zero mean value and a standard deviation 0.029
m,

Case 3: same as Case 2 except the white noise standard deviation is doubled to
0.058 m.

4.1 One-day Data Assimilation

One-day pseudo-observations at 15 selected locations are used to recover the
wind drag coefficient in this one-day data assimilation experiment (for convenience,
the value of  Cd appeared in this paper, including figures and tables, is multiplied by
103).  The forward model is integrated from rest with a true Cd as 10.0.  In the data
assimilation procedure, the first guess Cd is 20.0.  The variation of the optimal Cd, the
gradient of the cost function, and the cost function are plotted as a function of the
iteration number in Fig. 4 and the final values are listed in Table 2.  For Case 1, the
optimal Cd converges to the true value after three iterations and the corresponding
gradient and cost function are less than 10-8 .  For Cases 2 and 3, the optimal Cds tend
close to (but not exactly converge to) their true solutions after four iterations and the
cost functions are much greater than that of Case 1.  By comparison of the data
misfits (the difference between the model results and the observations) and the noise
added the observations, it is found that the curves of the misfits and noise for each
station are very similar.  This indicates that the value of the cost function is primarily
contributed by the noise.  The noise results in the optimization line search routine
failing to find a better converging direction for optimizing procedure.  Thus the
optimization procedure could not recover the true Cd.  This experiment indicates that
observation errors can affect the optimal results.

4.2 30-day Continuous Data Assimilation

            Table 2.  Final optimal Cd, gradient and cost function 

Optimal Cd Gradient Cost function

Case 1 9.99998 -3.197×10-8 7.0×10-10

Case 2 10.085 2.07×10-6 0.138

Case 3 10.170 -4.88×10-6 0.553
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Fig.4. The variation of parameters with number of iteration in the one-day identical
twin data assimilation: (a) the optimal Cd; (b) the gradient of the cost
function; and (c) the cost function.

4.2 30-day Continuous Data Assimilation

The three cases described above are repeated in a 30-day continuous data
assimilation.  The true wind drag coefficient Cd is set as a function of time, but
constant within each day.  The forward model starts from rest and creates a restart file
at the end of each day as the initial condition for next day’s data assimilation.  The
first guess Cd of the first day is 20.0 and the optimal Cd of the previous day is used
as the first guess Cd for the next day’s data assimilation.  The time series of the final
optimal Cd, the gradient of the cost function, and the cost function are plotted in  Fig.
5.  The maximum of difference between true and final optimal Cd, the maximum of
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gradients and the maximum of the cost functions from each case are presented in
Table 3.   For Case 1 with no observational error, the data assimilation procedure
recovers the optimal Cd to its true value.  The cost function and its gradient are less
than  10-9 and 10-7, respectively .   

Fig.5 Time series of parameters in the 30-day identical twin data assimilation: (a)
the optimal Cd; (b) the final gradient of the cost function; and (c) the final
cost function.

For Case 2, the recovered optimal Cd is also close to its true value.  However, the
cost function is much greater than that of Case 1.  As described in the one-day
simulation, the value of the cost function  is primarily contributed by the random
noise added to the pseudo-observations.  By adding the white noise to the pseudo-
observations, the forward model can not dynamically simulate the random noise so
that the final optimal Cd can not coverage to the true Cd.

For Case 3, by doubling the standard deviation of random noise, most of the
optimal Cds are also close to the true values. However, the differences between
optimal Cds and true Cds are much greater than that of Cases 1 and 2.  The cost
function and its gradient are the greatest among three cases.

For the continuous data assimilation cases, the restart field is generated by the
previous day forward model integration.  If there is a difference between the optimal
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Cd and its true Cd in the previous day, the restart field with the optimal Cd will be
different from true initial field of this day.  Then the optimal Cd may not converge to
its true value in this day data assimilation.

Table 3.  The Maximum of difference between the true and the final optimal  
                Cd, the maximum of cost Functions and maximum of Gradients

Max Cd Cd
optimal true

− Max Gradient Max Cost Function

Case 1 2.0×10-5 3.16×10-8 8.5×10-10

Case 2 0.37 3.4×10-5 0.16

Case 3 0.74 9.77×10-4 0.64

4.3 One-day Identical Twin Experiment with Eight Control Variables

The wind drag coefficient should be time and position dependent.  This is not
simply because we use the Large-Pond formulation for Cd, in which Cd depends on
wind speed, which itself is time and position dependent.  In finding optimal Cds as
part of a data assimilation scheme, we are allowing the “improvement” in Cd to
represent (and correct for) a systematic error in the wind field, which varies in space
and time.

In order to test the performance of the adjoint data assimilation system for the
multi-control variables case, the experiment with eight piecewise constant control
variables is devised and performed.  In this experiment, the entire domain is divided
into eight pieces, and the wind drag coefficient in each piece is constant and used as
one control variable (see Fig.1).  The true solution of Cd  is expressed as

              m=1,2,�8 (18)( )C mdm = + −�

��
�

��
10 0 5 0 2

30 0
1. . sin

.
π

here m denotes the index of control variable in each subregion. The initial guesses
for all of Cd are set to be 20.0.  The result of this experiment shows that, in the first
several iterations, most of the optimal Cd components (Fig.6) converge towards their
true solutions very fast.  The optimal Cd values for all of the eight components are 
very close to their true values  after about 10 iterations.  The maximum difference
between the true solution and the final optimal Cd for all eight control variables is
1.5×10-4, which appeared at the eighth control variable component.  The cost function
and the norm of the gradient (Fig.7) drop rapidly in the first three iterations.  The
convergence criterion  is satisfied after 30 iterations, and the correspondingG < −10 7

values of the cost function and the norm of the gradient are 1.4×10-11 and  3.2×10-8

respectively.
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 Fig.6.  Variation of the optimal Cd components with the number of iterations for one
           day identical experiment with eight control variables.

Fig.7.  Variation of the norm of the gradient  and the cost function J/J0 with theG
G0

number of iterations one day identical experiment with eight control variables.
Where J0and  are initial values of the cost function and its gradient.  G0
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In order to examine the effects of the initial guesses of Cd on the optimization
procedure, different initial guesses are tested.  The  results show that no matter how
far the first guesses are away from their true solutions, the cost function and the norm
of the gradient drop rapidly in the initial several iterations, and the optimal Cds are
very close to their true solutions after about ten iterations.  After that, the
optimization procedure adjusts the optimal Cd slowly, and all of the eight optimal Cd
components gradually converge to their true solutions. 

5.  Summary
 

From the experiments described in previous sections, we conclude that: 
a. The linearized 2-D POM simulates the subtidal water level fairly well for this

coastal ocean.  The demeaned RMS errors and correlation coefficients are 9
cm and 0.87 at Sandy Hook and 10 cm and 0.79 at CBBT,  respectively.

b. For perfect pseudo-observations, the adjoint data assimilation system can
exactly recover the true wind drag coefficient for both of the one and eight
control variable experiments.

c. Since water level observational errors have an impact on the wind drag
coefficient recovery, the optimal Cd may not converge to its true value if the
errors are significant.

d. The errors in initial field play a very important role in recovering the wind
drag coefficient. 

Acknowledgments

 We would like to thank Dr. Yuanfu Xie of NOAA’s Forecast System Laboratory
for his assistance and great discussion in the construction of the adjoint model.  

References

Aikman, F A., III, G. L. Mellor, D. Sheinin, P. Chen, L. Breaker, K. Bosley and D.
B. Rao, 1996.  “Towards an operational nowcast/forecast system for the U.S. East
Coast”.  Modern Approaches to Data Assimilation in Ocean Modeling, 61, P.
Malanotte-Rizzoli, Ed., Elservier Publishers, 347-376.

Blumberg, A. F. and G. L. Mellor, 1987. “A description of a three-dimensional
coastal ocean circulation model.” Three Dimensional Coastal Ocean Models. N.
S. Heaper, Amer. Geophys. Union, 1-16.

Chu, P., C. Fan, and L. L. Ehret, 1997.  “Determination of open boundary conditions
with optimization method. J. Atmos. And Oceanic. Tech., Vol. 14, 723-734.

Das, S. K. and R. W. Lardner, 1991.   “On the estimation of parameters of hydraulic
models by assimilation of periodic tidal data.”  J. Geophys. Res., Vol.96, C8,
15187-15196.



                                   Zhang, Wei,  Parker-17-

Ezer, T. and G. L. Mellor, 1997.  “Data assimilation experiments in the Gulf Stream
Region: how useful are satellite-derived surface data for nowcasting the
subsurface fields”.  J. Atmos. Oceanic Tech., 14, 1379-1391.

Large, W. G., and S. Pond, 1981. “Open ocean momentum flux measurements in
moderate to strong winds.” J. Phys. Oceanogr., Vol.11, 324-336.

Lawson, L. M, Y. h. Spitz, E. E. Hofmann, and R. B. Long. (1995). “A data        
assimilation technique applied to a predator-prey model. Bulletin of
Mathematical  Biology, 1995, 57, 593-617.

Liu, D. and J. Nocedal, 1989. “On the limited memory BFGS method for large scale
optimization.” Mathematical Programming, B 45, 503-528.

Mellor, G. L., 1991. “User’s guide for a three dimensional, primitive equation,
numerical ocean model.” Princeton University.

Mellor, G. L. and T. Ezer, 1991.  “A Gulf Stream model and an altimetry
assimilation scheme”.  J. Geophys. Res., 96, 8779-8795.

 Panchang, V. G. and J. J. O’Brien, 1989. “On the determination of hydraulic model
parameters using the adjoint state formulation.” Modeling Marine Systems.
Edited by A. M. Davies, CRC Press, Boca Racon, 6-18.

Ralf, G. and T. Kaminski, 1996. “Recipes for adjoint code construction.” Technical
Report 212, 1996, p35. Max-Planck-Institut fur Meteorologie.

Ralf, G., 1997. “Tangent Linear and Adjoint Model Compiler.  Users Manual, MIT,
53p.

Sasaki, Y., 1970a. “Some basic formalisms in numerical variational analysis.” 
Monthly  Weather Review, Vol.98, No.12,  875-883.

Sasaki, Y., 1970b. “Numerical variational analysis formulated under the constraints
as determined by longwave equations and a low-pass filter.”  Vol.98, No.12, 884-
899.

Schwab, D. J., 1982. “An inverse method for determining wind stress from water
level fluctuations.” Dyn. of Atmos. And Oceans., 6, 251-278.

Yu, L. and J. J. O’Brien, 1991. “Variational estimation of the wind stress drag
coefficient and  the oceanic eddy viscosity profile.”  J. Phys. Oceanogr., Vol. 21,
709-719.

Zhu, J., Q. C. Zeng, D. J. Guo and C. Liu,   1997a. “The Construction of adjoint
model of IAP baratropic model and its second-order adjoint model.”  Science in
China.  27(3), 277-283. (In Chinese)

Zhu, J., Q. C. Zeng, D. J. Guo and C. Liu, 1997b. “Estimation of the open
boundary conditions of tidal model from coastal tidal observations by the adjoint
method.” Science in China, 1997, 27(5), 462-468. (In Chinese)



                                   Zhang, Wei,  Parker-18-

key words

Subtidal Water Level, Two-Dimensional POM, Adjoint Variational Data
Assimilation,
Parameter Estimation, Cost Function, Wind Drag Coefficient, Twin Experiment.


