Economic Benefits of NOAA's Navigation Services

21 March 2007

Hauke Kite-Powell Woods Hole Oceanographic Institution hauke@whoi.edu

NOAA's Navigation Services

- ... are fundamentally information to support decisions
- ...support the nation's maritime transportation system, which includes:
 - Shipping operations
 - Port facilities
 - Spill prevention and response
 - SAR, law enforcement
- ...also generate value in other areas, including:
 - Recreational boating
 - Marine resource management
 - Weather forecasting

Economic Importance of the MTS

- Can be measured in many different ways:
 - Contribution to GDP of all cargo moved by water: about \$800 billion
 - Gross output (sales): \$35 billion
 - Value added (contribution to GDP) by water transportation in the U.S.: \$9 billion

• What is the "right" measure?

Source of Benefits

- The product is **information** about the environment in which ships operate
 - Chart data: topography/hydrography
 - Tides and currents: dynamic
- Information has value because it is used in economic decisions
- Better decisions lead to improved physical and economic outcomes

Value of information

- information has value when it reduces uncertainty in decisionmaking
- contrast base case scenario and new information scenario
- Example: storm forecast & fishing fleet
 - Present (base case): 80% correct
 - Improved case: 95% correct
 - What is this worth?

Figure 1: Example Calculation of Value of Forecast Information: Baseline Case

weather		forecast	decision	<u>result</u>	payoff
storm <	80%	_"storm"	95% stay in port	no catch, some damage	-\$20m
			5% go to sea	vessels lost at sea	-\$100m
	20%	"no storm"	60% stay in port	no catch, some damage	-\$20m
			40% go to sea	vessels lost at sea	-\$100m
	200	Hussau Harring	50%stay in port	no catch, no damage	-\$10m
no storm <	20%	"storm"	50% go to sea	catch landed	+\$10 m
	80%	"no storm"	0%stay in port	no catch, no damage	-\$10m
			100% go to sea	catch landed	+\$10m
			expected value of payoff = \$6.12m		

Figure 1: Example Calculation of Value of Forecast Information: Baseline Case weather **forecast** decision result payoff 95% stay in port no catch, some damage -\$20m 80% "storm"== 5% vessels lost at sea. go to sea -\$100m storm -5% 60% stay in port no catch, some damage -\$20m 20% 'no storm" -40% go to sea vessels lost at sea -\$100m 50% stay in port no catch, no damage -\$10m 20% "storm" 🚤 50% catch landed +\$10m go to sea no storm < 95% 0% stay in port no catch, no damage -\$10m 80% no storm" 100% go to sea catch landed +\$10m expected value of payoff = \$6.12m

Figure 1: Example Calculation of Value of Forecast Information: Baseline Case weather **forecast** decision result payoff 95% -\$20m stay in port no catch, some damage 80% "storm"-== 5% vessels lost at sea -\$100m go to sea storm • 5% 60% stay in port \$20m no catch, some damage 20% 'no storm" 40% vessels lost at sea -\$100m go to sea 50% -\$10m stay in port no catch, no damage 20% "storm" 🚤 50% catch landed +\$10mgo to sea no storm < 0% 95% -\$10m stay in port no catch, no damage 80% no storm" 100% go to sea catch landed +\$10m expected value of payoff = \$6.12m

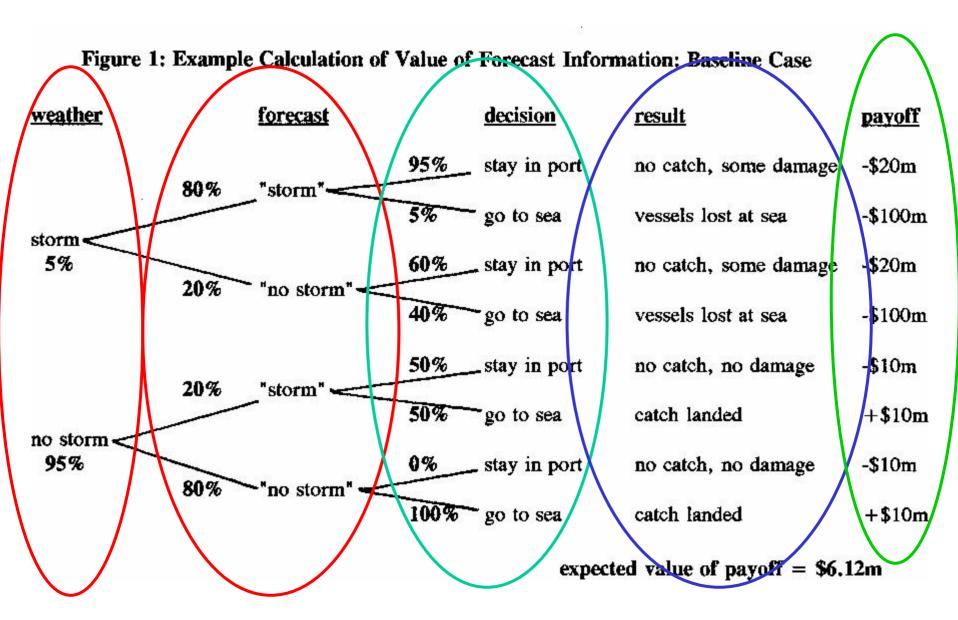
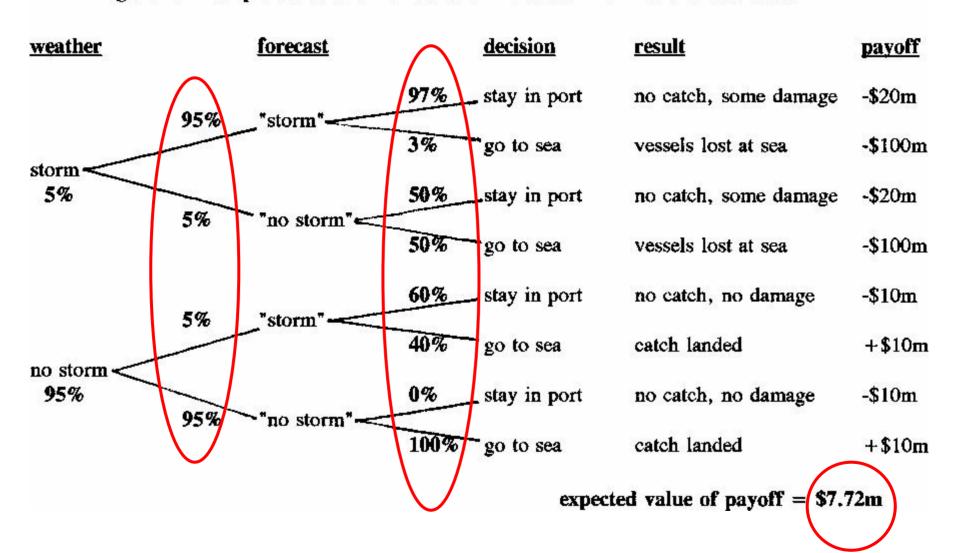
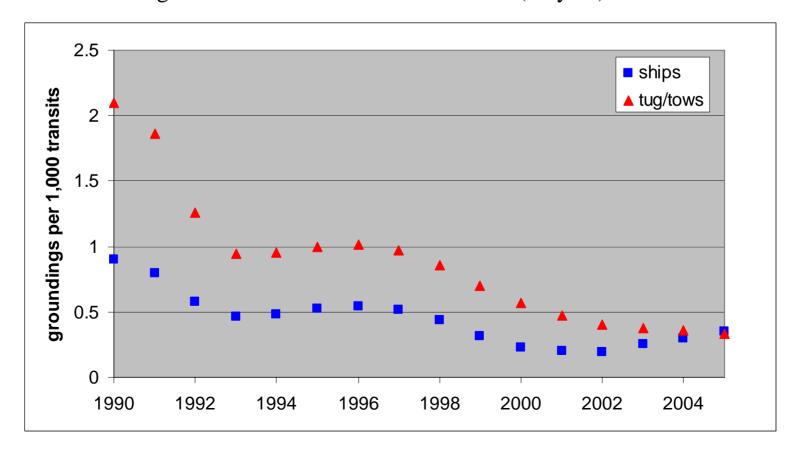



Figure 2: Example Calculation of Value of Forecast Information: CFS Case


Estimated Annual Benefits: PORTS, in millon \$/year

Category	Tampa Bay	Houston/ Galveston
Avoided accidents	1.1 - 2.8	10.5
Increased efficiency	1.1	0.4
Improved spill response	1.1 – 1.8	1.0 - 3.0
Subtotal – Maritime	3.3 – 5.7	11.9 – 13.9
Improved weather forecasts	2.0	2.0 - 3.5
Recreational use (boating, fishing)	1.5	0.9
Grand Total	6.8 – 9.0	14.8 – 18.3

Example: Grounding Rates, Houston/Galveston

PORTS introduced in late 1990s:

- -ships: 50% reduction from baseline risk level (6/year)
- -tug/tows: 60% reduction from baseline (90/year)

Estimated Benefits: Nautical Charts/Chart Data

- Consumer surplus estimates (preliminary)
 - Commercial shipping: \$27 million/year
 - Recreational users: \$14 million/year
- Potential safety benefits associated with digital chart data
 - Order of \$100 million/year
 - Now in use on 90% of ships in US waters

These are Lower Bound Estimates of Total Value

Uses not quantified in economic terms:

- Educational use
- Scientific research
- Environmental management & modeling
- Civil engineering projects
- Military/Homeland Security

Efficiency through Information

- Moving goods by water will always be a matter of concrete, steel, and dredges
- Contribution of NOAA Navigation Services to total MTS value: about 1 percent
- Key for NOAA NS: adding value through improved efficiency of the MTS

Questions

• How useful is this kind of economic information from your perspective?

• How can we improve these studies?

 What other kinds of information would you like to have to help you guide the work of NOAA Navigation Services?