Assessing coastal change along rocky and remote shorelines

Haunani

Remote low lying islands

<u>NEED</u>

- Future sea level estimates exceed average island elevation
- Hurricane Walaka devastated island and coral habitat

CHALLENGES

- Limited data
- Limited access
- Remotely sensed data is poorly georeferenced

SOLUTIONS

- Land and marine surveys
 - diver & UAS + GPS surveys
- Sediment sampling
- Aerial imagery & LiDAR surveys are planned

He pūkoʻa kani 'āina

A coral reef that grows into an island.

The resiliency of our islands is dependent upon the health of our reefs.

<u>Production</u>

Framework- corals, cca, cementation Direct producers- foraminifera, shells, etc

Erosion

Biological-fish, urchins Physical- storms Chemical- dissolution

Bio-geological linkages of reef island systems

Coral reefs are

- biological sediment factories
- foundational to island development & resilience

Hurricane Walaka

October 2018- Cat. 3, sustained winds of 125+ mph and wave heights of 11-15 m decimated coral reef and island environments

Reef images provided by Dr. John Burns & Kailey Pascoe at the University of Hawai'i Hilo MEGA Lab

East island displaced ~ 100 m, reduced to 5% size

East prior to Hurricane (July 2018)

East after Cat 3 Hurricane (Oct 2018)

East island recovered 56% pre-Hurricane size, approx. 12 m/yr.

East prior to Hurricane (July 2018)

East 3 years after Hurricane (July 2021)

Direction of wave overwash

Tern Island

Direction of wave overwash

Tern Island

Removed vegetation & elevated portions of the island

RAPTURE REEF

Pre Walaka: September 2017 70% *Acropora* coral

Walaka: October 2018

Post Walaka: July 2019 99% rubble and sand

Initial recovery of coral reef documented 3 years post Hurricane Walaka

Table 1. Percentage of benthic cover in 2017 (before Walaka), 2019 (nine months after Walaka) and 2021 (three years after Walaka), with "-" denoting no detection.

	2017 ¹	2019 ¹	2021
Tabulate Acropora	69.7	- 10-3 V	1.20
Encrusting Porites	0.8	÷	0.04
Encrusting Montipora	0.1		
Branching Pocillopora		4	0.31
Crustose coralline algae	1.7		-
Macro and filamentous algae			0.35
Sponges	100		0.66
Hard substrata	27.0	0.3	
Rubble		67.9	80.66
Sand	0.7	31.8	17.70

¹ Source: Pascoe et al., 2021 [6].

<u>Pre Walaka: September 2017</u> *Acropora* coral dominant minimal sand
<u>9 mon. Post Walaka: July 2019</u>
no coral rubble & sand dominant

<u>3 yrs Post Walaka: August 2021</u> coral recruits binders (sponges) sand export reef fish return

Fukunaga et al, 2022 ; Pascoe et al., 2021

Rocky and intertidal coastlines

<u>NEED</u>

- Most sea level and shoreline estimates do not include rocky shorelines
- Rocky & intertidal shorelines are important fisheries, & access points to the ocean

CHALLENGES

- Limited data
 - Low resolution data sets do not properly capture habitat
- Gaps in knowledge as to how intertidal habitat will evolve with elevated water levels

SOLUTIONS

 Land and marine surveys using a multi-scaled approach

Multi-scaled approach to assess sea level rise impacts to Hawaiian aquatic resources.

- 3 graduate students
- PhD pipeline w/UHH & ASU
- 2 NASA DEVELOP cohorts
- Coastal UAV mapping course

