## Introduction to Digital Twin

#### Dr. Qassim Abdullah

HSRP Member VP and Chief Scientist, Woolpert, Inc. Adjunct Professor at PSU and UMBC







## What is Digital Twin?

- Dynamic, up-to-date replica or representation of a physical object, asset, or system
- Complete collection of all data in a single place
- Evolves with the flow of real-time input from sensors and more
- NOT a static 3D model or simulation; DOES continue to evolve with added data and information
- Connection between digital and physical worlds enhances life cycles, informs decision-making, and supports predictive capabilities

#### How Digital Twin Relates to NOAA's Ocean and Coastal Monitoring and Mapping Activities

Digital twin of the ocean: Virtual representation of the ocean with its physical, chemical, and biological properties, based on ocean observations and ocean models with the purpose of developing what-if scenarios for decision-making.



#### How Digital Twin Benefits NOAA in Managing Assets

- Accelerates asset operational readiness
- Transforms asset life cycles with maintenance and performance data
- Lives in dynamic, easy-to-access and manage objects
- Prevents trapping of digital data in static files by transferring all data related to the entire asset life cycle (design to operation)
- Minimizes asset management challenges caused by analog, unclassified, and disconnected data



## What do I know about NOAA services?

NOAA provides public and federal agencies with a tremendous amount of data and services.

#### **Foundational Data**

IOAA



#### **Supporting Maritime Commerce Now**







compliments of NOAA

### **Non-Navigational Uses of Foundational Data**

















#### compliments of NOAA

### Mapping Data Streams and Uses





















#### compliments of NOAA

### Water Levels, Currents, Ocean/Met Data and Uses

NOAA/NOS/CO-OPS







1088







#### compliments of NOAA

 87222214 Virginia Key, Florida
 3.00 +(- 0.21 mm)yr

 0.00

 0.00 +(- 0.21 mm)yr

 0.00 +(- 0.21 mm)yr





#### **Geodetic Data**













Satellite Observations Environmental Modeling Obstructions in Air & Sea Water Levels and Flow Sea Surface Topography Navigation Habitat Mapping Bathymetry Land Elevations Aerial Imagery \*Geodetic Control\*

compliments of NOAA

### **Federal Agency Data Users and Uses**



compliments of NOAA

### Massive data presents massive challenges

The past dictated...

- Technological challenges in processing, analyzing, and disseminating large amounts of data
- Lack of digital transformation readiness within NOAA stakeholders
- Clarity in understanding future directions for data and data sciences

- Substantial resources and energy are spent on managing large assets
  - using the conventional way. Today's conventional asset management is challenging as it is:
- Based on analog, unclassified, and disconnected data and records
- Slows asset operational readiness
- Lose track of asset life cycles due lack of efficient trackingof maintenance and performance data

### The Future is Now...

Global initiatives require holistic approach to data management characterized by:

- Data updated and served in real or near-real time through stable, easyto-access interface
- Data based on AI-driven data science and analytics
- Trustworthy data interoperable with digital twin
- Accurate globe positioning using common datum and accuracy standards

### Enabling Events and Technologies

#### • NGS modernization of Spatial Reference System Positions

- Provides more accurate and consistent datum for CONUS, Alaska, Hawaii, and all territories.
- $\circ~{\sf Regularly}\,{\sf updated}\,{\sf with}\,{\sf Earth's}\,{\sf crustal}\,{\sf motion}$
- $\circ~$  Increased accuracy and efficiency
- Consistent with GNSS (geocentric)
- Compatible with terrestrial methods (e.g., leveling)
- $\circ$  4 new terrestrial reference frames
- $\circ$  1 new geopotential ("vertical") datum
- Semi-dynamic
  - All locations will have velocities (dynamic)
  - Can get coordinates for specific dates (semi)
- ASPRS second edition of positional accuracy standards
  - $_{\odot}\,$  Supports high accuracy of today's data and NGS new datum

# Digital twin offers the promise of building constantly updated data models including all NOAA data services.

#### Four Frames/Plates in 2022



#### Today's Crossroads

- A. Continue using current practices and tools
- B. Jump into the future towards progressive digital transformation by embracing digital twin



### What Does It Take?

Digital twin requires building on modern data construction practices

- Founded on Al-driven data science and analytics
- Ensured interoperability between data and digital twin



### What Does It Take?

Ensure system endorses guiding principles (TRUS) to demonstrate trustworthiness of the data repositories



Graphic courtesy: IHO Report\*\*



#### Sustainability

Risk mitigation, business continuity, disaster recovery, funding, governance to assure FAIR

## Thank You!

Dr. Qassim Abdullah HSRP Member VP and Chief Scientist, Woolpert, Inc Adjunct Professor at PSU and UMBC

qassim.abdullah@woolpert.com mapping-matters@asprs.org woolpert.com | asprs.org/asprs-publications/mapping-matters