

Heidi Mehl, Ph.D.

Director of Water and Agriculture, Kansas
Science advisor, Mississippi River Basin
heidi.mehl@tnc.org

Our Team

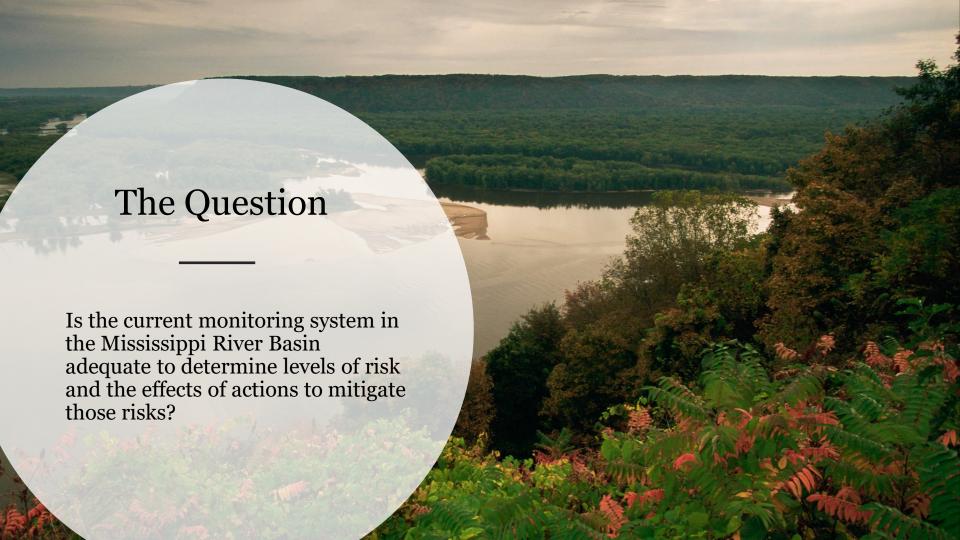
3,600 conservationists

1,300 prominent volunteer leaders

72 countries

400 scientists

A FAR-REACHING ALUMNI NETWORK of leaders in the conservation community


50 U.S.states

1 MILLION dedicated members

Risks to the Basin

- Increased frequency and intensity of weather and climate extremes, impacts to infrastructure and communities
- Health hazards to people and wildlife from nitrogen and phosphorus runoff
- Invasive species that displace native species
- Loss of natural coastal wetlands
- Inadequate navigation data

Building a Coalition for Action

Purpose Speak as a unified voice and acquire the support and public funding necessary to meet monitoring goal for the MRB

- Spring 2021: Built and launched the coalition
- Fall 2022: Technical coalition members designed the system and identified cost
- Spring 2023 to Present: Advocating for funding

Technical Design Elements

Accessible, efficient, equitable

Multi-use, scalable, modular

Real-time data, trends analysis, integrated reporting

A fully-funded sentinel monitoring system across the Mississippi River in the next five years.

Objectives

- 1. Obtain consistent, comparable information on loads and trends in streamflow, water-quality, and sediment to understand how changes in climate, land-use, and landscape management affect the Mississippi River, major tributaries, and the Gulf of Mexico.
- 2. Provide real-time information to guide decisions on flood risk management and resilience, navigation safety, and diversions on the Mississippi River.
- 3. Develop interfaces to provide transparent and timely data to the public.

Design at a Glance

INTEGRATED

DATA

SYSTEM

NAVIGATION

SAFETY

Timely, consistent data that meets the needs of multiple users. **38 U.S. Geologic Survey** stations along the Mississippi River mainstem and major tributaries that monitor streamflow, water-quality, and sediment.

FLOODING &

RISK MGT

WATER QUALITY

Sentinel

System

1,414 U.S. Army Corps of Engineers stations and gages within the Corps' 10 districts responsible for monitoring flooding and navigation along the Mississippi River mainstem and major tributaries.

12 National Oceanic and Atmospheric Administrationstations in the Lower Mississippi River
Basin that support navigational safety,
coastal resource management, and storm
flood forecasting.

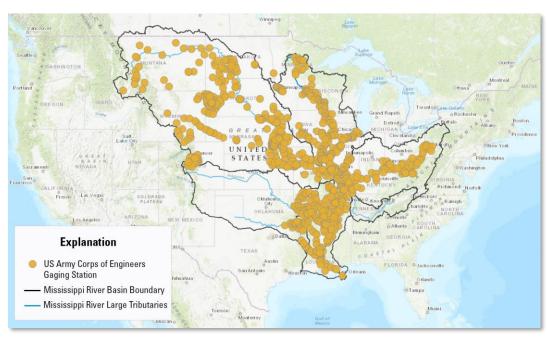
8 U.S. Geologic Survey CODAR sensors for monitoring high priority navigation points along the Mississippi River mainstem and major tributaries.

Objective 1: Water Flow, Quality &

Sediment

Parameters: Stage, Flow, Velocity, Nitrate probe, Nutrient Samples, Suspended sediment, bed material, sand breakdown & bedload samples, pH, Temp, SC, DO, Turbidity

- Priority sites at every 5% of the maximum load
- USGS: 35 existing sites, gage and infrastructure upgrades + 3 new sites
- Year One Startup Cost: \$7.55 M (new funds)
- Total 25-year cost: \$313 M



Objective 2: Flood Risk Management & Resilience

Flow and Q gages for flood modeling and navigation safety

- Priority sites identified by USACE experts and NWS flood modelers.
- USACE: 1,414 existing flow and Q gages along major tributaries and the Mississippi Mainstem
- Year 1 Cost: \$17.5 M (currently funded)
- Total 25-year cost: \$675 M

Objective 2: Navigational Safety

CODAR systems, Air gap sensor systems, Flow gages

- Site needs identified from USGS and Big River Coalition proposals.
- Priority sites add to existing air gap station network already in place.
- USGS 8 new CODAR systems at key navigational choke points.
- NOAA Ports System (lowermost river) –
 3 new air gap gages and 6 new current meters at key bridges.
- Year One Startup Cost: \$2.4 M (new funds)
- Total 25-year cost: \$26 M

Objective 3: Data Interfaces

- Publicly accessible, supports multiple users
- Built by USGS Wetlands and Aquatic Research center
- Input data from multiple federal agencies
- Provides key data products (maps, charts, graphs, key stakeholders design key data products)
- All data must be collected and displayed to the USGS data standard
 - Actual design will be done through a stakeholder process
 - System will support machine (e.g., models) and human users.
 - Year 1 Start-up Cost: \$7.4 M
 - Periodic update cost: \$4 M (every 6-7 years)
 - Total 25-year cost: \$117 M

Estimated Cost at a Glance

Year 1:

- Cost to operate and maintain the current piecemeal system: \$20 M
- Additional investment needed to build the sentinel system: \$23.4 M

25 years:

- Cost to operate and maintain the current system: \$771.4 M
- Total development and O&M cost for a sentinel system: \$1.13 B

Investing another \$358.8 M over 25 years will create an integrated monitoring system that meets quality standards and provides timely, readily accessible data to multiple public users.

