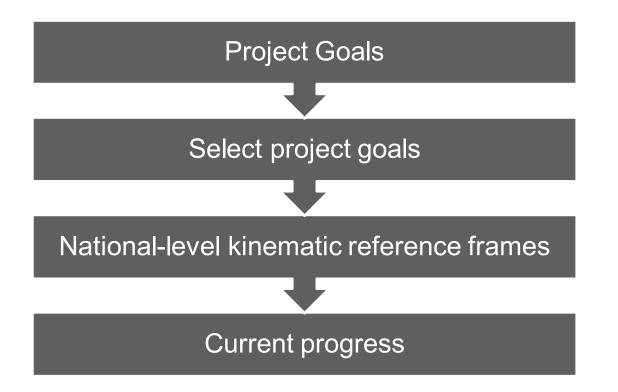


SURVEYING AND GEOMATICS CONFERENCE Corvallis, Oregon | June 2-4



Developing a Fully Kinematic, Backwards-Compatible Reference Frame for the Continental United States of America and Canada

Mara A. Figueroa, Demián D. Gómez, Michael G. Bevis, and Joachim Moortgat

Presentation Outline

Project goals

•**Develop a workflow** involving data curation, processing, and analysis to create an operational (*sandbox*) kinematic reference frame.

•We call this workflow the Geometric Geodesy Processing Line (GGPL)

•Features of the GGPL include:

- A **relational database** (PostgreSQL) to store **all** the data and products, including the frame itself
- Integration between GNSS solutions, station trajectory models, and other observations such as InSAR
- Artificial intelligence techniques to improve trajectory models and model deformation constraints using InSAR observations
- A software package that streamlines creation of models and frame access

Select project goals

•Development of the operational (sandbox) kinematic reference frame (KRF).

Will require automation processes to detect and model deformation from, for example, earthquakes, GIA, and other crustal motions

•Parallelization wrapper for M-PAGES (adapted from our existing Parallel.GAMIT)

Process all existing data in the US and Canada

•Intraframe deformation (i.e. trajectory prediction models) using GNSS and InSAR aided by AI to access the conventional epoch of the frame.

Include as many observations as possible and also provide the users with a maps of "stable areas" to facilitate access to the frame using differential processing

National-level kinematic reference frames (KFR)

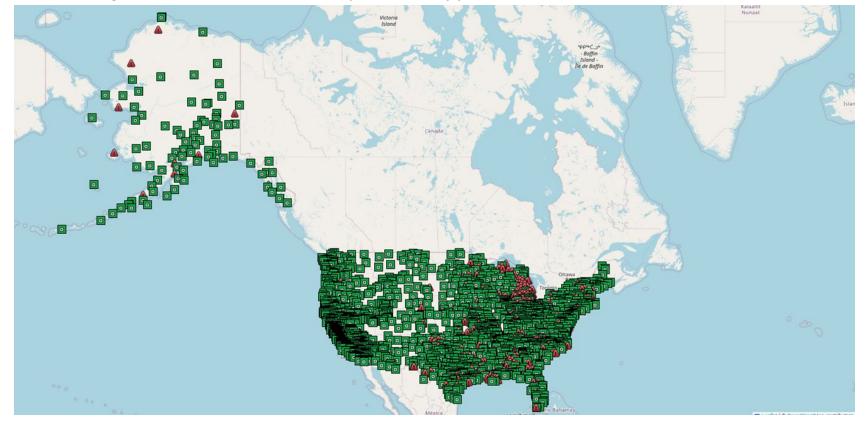
•Definition: the coordinates and model parameters defining the reference frame are time-dependent

•Single or multiple conventional epochs, accessible to all users anytime and anywhere to guarantee topologic homogeneity.

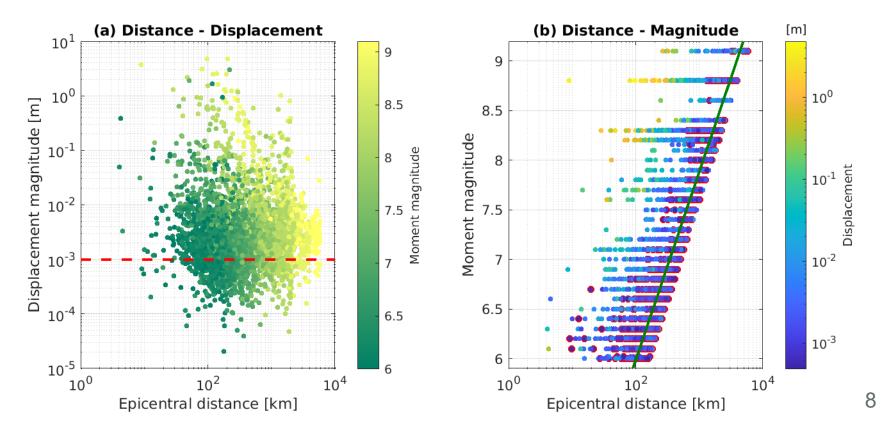
•Models to access the conventional epoch are mandatory, even after an earthquake

•Kinematic implies constant update of the reference frame parameters to "honor" the frame's internal geometry.

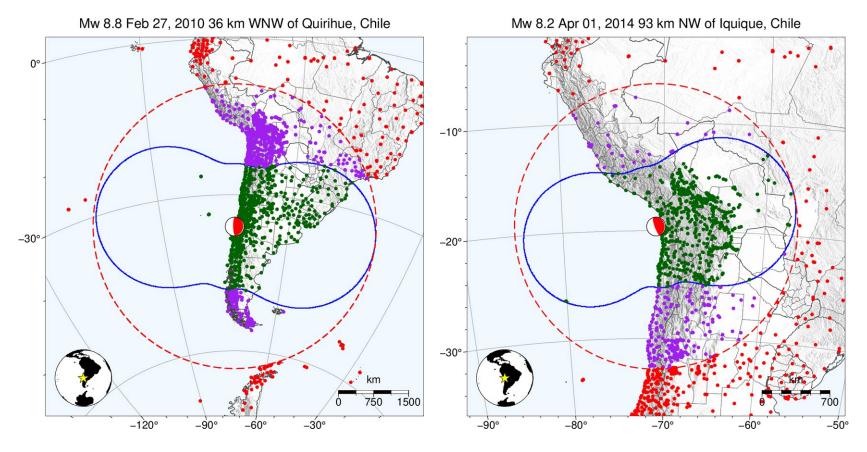
Steps for the realization of a kinematic RF


$acking \to Networl$	< trajectories	
letadata eceiver/antenna hanges)	Earthquakes	Parameter inheritance (IGS / ITRF)
GNSS trajectories		
Secular model	Coseismic models	Postseismic, GIA, other loading models

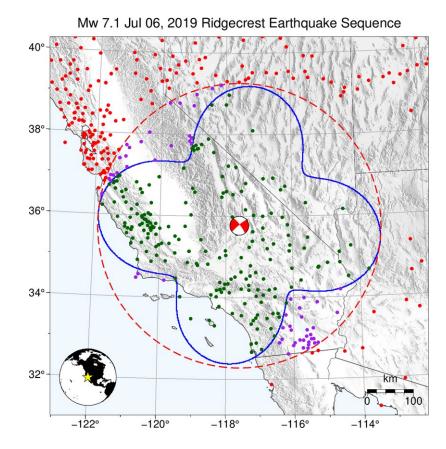
Automation required to include all possible geophysical effects


U.S. CORS Network

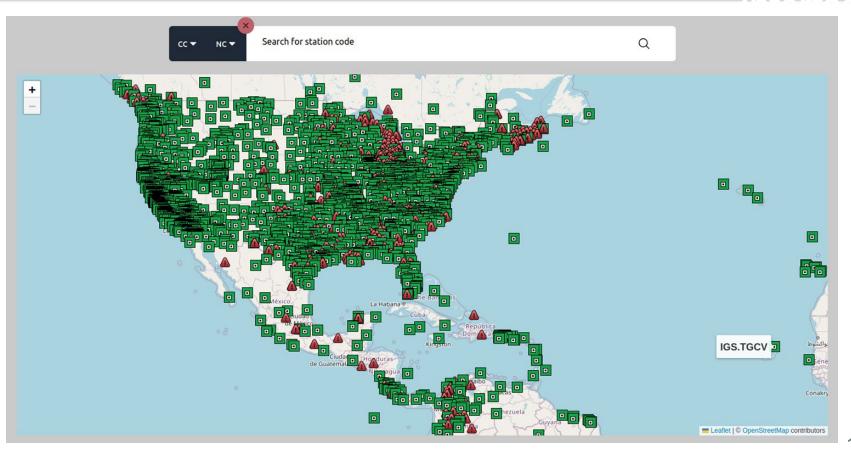
Processing GNSS observations (underway)



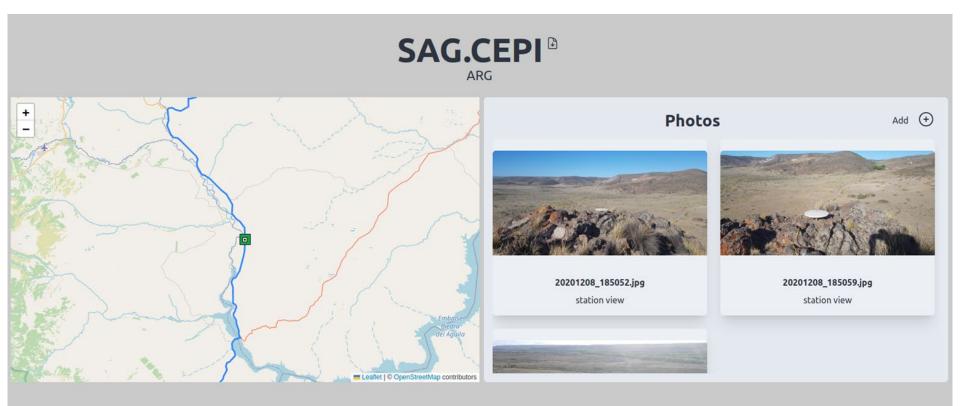
Earthquake detection \rightarrow significant improvement over current methods \rightarrow better time series




Motivation


THE OHIO STATE UNIVERSITY

Mw 6.5 Mar 31, 2020 Stanley, Idaho

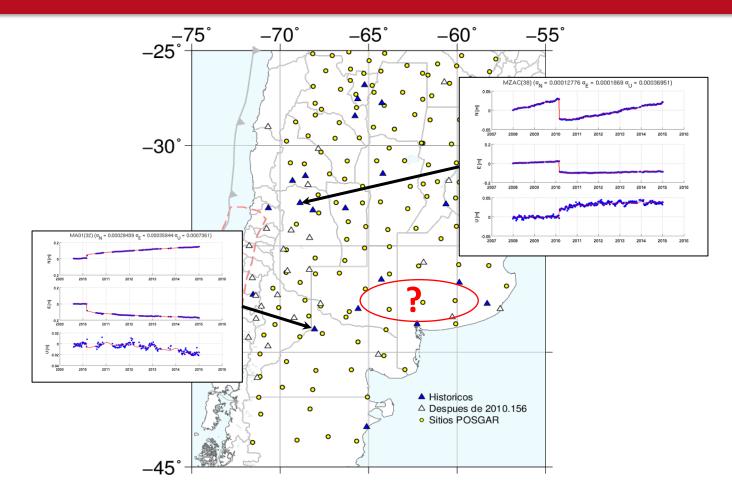


Visual interactive GGPL

					CEPI					Add (-	÷
Modify	RECEIVER CODE	RECEIVER SERIAL	RECEIVER FIRMWARE	ANTENNA CODE	ANTENNA SERIAL	ANTENNA HEIGHT	ANTENNA NORTH	ANTENNA EAST	HEIGHT CODE	RADOME CODE	C
2	TRIMBLE 4000SSE	4036	5.66	TRM22020.00+GP	53877	0.046	0	0	DHARP	NONE	0.
	TRIMBLE 4000SSE	2045	5.68	TRM14532.00	66300	0.046	0	0	DHARP	NONE	1
	TRIMBLE 4000SSE	22015	1.12	TRM33429.00+GP	55079	0.046	0	0	DHARP	NONE	1)
	TRIMBLE 4000SSE	22015	1.12	TRM33429.00+GP		0.046	0	0	DHARP	NONE	1
	TRIMBLE 4000SSE	22015	1.12	TRM22020.00+GP		0.046	0	0	DHARP	NONE	1:
	TRIMBLE NETRS	4912167682	1.12	TRM41249.00	60196072	0.04	0	0	DHARP	NONE	1:
					< 1)	> >					

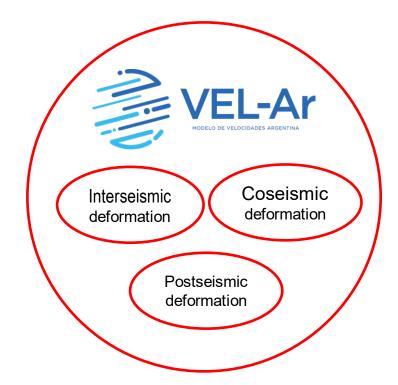
Visual interactive GGPL

			Meta	0010			Ĺ
Station Type		Monument SAGA monument			Monument Photo		
Campaign Status Active Offline		Remote Access Link			Ball		
Battery No Description 		Communications • No Description			Charles Ber		
First rinex 03/20/1994, 23:59:30		Last rinex 12/18/2020, 20:27:45			and the second second		
Comments SAGA site installed in the 1 cross at the top of the mou might disturb the site. Mea 2023, see visits) without a p	sured twice (2020 and	Navigation File sag.cepi.kmz					
eodetic Coordinates			ß	Cartesian Coordinates			ſ
eodetic Coordinates	Longitude 70°37'55.6829"W	Height 668.158 m	ß	Cartesian Coordinates x 1616830.744 m	Y -4599471.707 m	z -4099587.466 m	đ
Latitude 40°14'57.6364"S			ß	x			ć
Latitude 40°14'57.6364"S			ß	x			2
Latitude 40°14'57.6364"S quipment Antenna Code		668.158 m Antenna Serial	ß	X 1616830.744 m Height Code	-4599471.707 m Receiver Code		گ



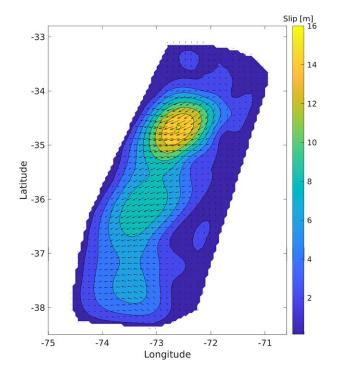
Visual interactive GGPL

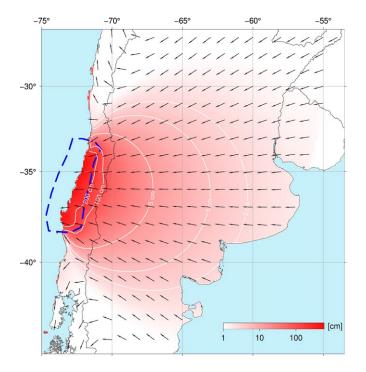
	2023-12	2-07	Ľ
General			
Campaign: (Mendoza + Neuquen 2023) 2023-12-03 - 2023-12-08		Visit Images 🔶	
People: DEMIAN GOMEZ	()		
JUAN PABLO PAROLA EMILIO RUSS			
Log Sheet: CEPI_2023-12-07.pdf	لي لي		
Navigation File:	(\Rightarrow)	Description antenna + Juan Pablo	
There is no navigation file Comments:	li.	• • • •	
GNSS Files			Ŧ
CEP1202312070000c.T00 raw file	Ŧ	CEPI202312080000c.T00	5


Intraframe Deformation

Trajectory Prediction Models

- A TPM, continuous in space and time, that allows us to predict the behavior of passive benchmarks.
- This model ensures the access to a geodetic reference frame after big earthquakes utilizing postseismic coordinates.





- When the observing GNSS network is sparse, the coseismic effect cannot be interpolated due to the roughness of the deformation field
- We use a geophysical model in a hybrid (dynamic-kinematic) mode: we use elastic deformation of a spherical earth to constrain the overall coseismic displacement field without imposing the usual geodynamic constraints on a fault slip distribution.


Slip distribution and coseismic deformation grid - MAULE

Slip distribution and coseismic deformation grid - ILLAPEL

Implementation of TPMs

KIN Ministerio	f 🔀 🗇 🗖 🖾
de Defensa	NUESTROS PRODUCTOS NUESTRO INSTITUTO NUESTRAS ACTIVIDADES NUESTROS SERVICIOS
	A Martine Chiller A State A The With
ISTITUTO	CALCULADORA ONLINE VEL-AR
Institucional	
Representaciones Internacionales	PASO 1 PASO 2 PASO 3 PASO 4 PASO 5 COORDENADAS POSGAR 07
Administración	
Marco Legal	Ingrese la fecha en la cual llevó a cabo la medición GPS/GNSS
Transparencia	(la misma debe ser mayor a 01/01/2005).
CTIVIDADES	
Geodesia	
Introducción	Fecha (dd/mm/aaaa)
RAMSAC	
RAMSAC-NTRIP	
POSGAR 07	
POSGAR 94	
PPP-Ar	
CIGA	SIGUIENTE
VEL-Ar	
Introducción	

Ministerio de Defensa

Use of TPMs

f 🕺 🞯 🗖 🔤 📞

NUESTROS SERVICIOS

NUESTRAS ACTIVIDADES

INSTITUTO

INTRODUCCIÓN

Institucional

Representaciones Internacionales Administración Marco Legal Transparencia

ACTIVIDADES

Geodesia
Introducción
RAMSAC
RAMSAC-NTRIP
POSGAR 07
POSGAR 94
PPP-Ar
Introducción
Acceso al servicio

Consultas frecuentes

NUESTROS PRODUCTOS

PPP-Ar es un servicio en línea gratuito que le permite a los usuarios de la tecnología GNSS obtener coordenadas precisas vinculadas al marco de referencia geodésico POSGAR07, a partir del envío de datos en formato RINEX de receptores doble frecuencia que operan en modo estático.

NUESTRO INSTITUTO

El servicio PPP-Ar utiliza el programa CSRS-PPP desarrollado por la División de Geodesia del Instituto Canadiense de Recursos Naturales (NRCan) para obtener coordenadas referidas al marco de referencia geodésico de las órbitas de los satélites (actualmente IGb14) y en la época de medición. CSRS-PPP utiliza órbitas precisas de los satélites y correcciones a los relojes que genera IGS (Servicio Internacional GNSS), entre otros productos y modelos.

Luego, PPP-Ar introduce el modelo de trayectorias VEL-Ar para trasladar las coordenadas determinadas por el programa CSRS-PPP en la época de medición a la época convencional (2006.632) del marco de referencia oficial POSGAR07. Por último, se aplican parámetros de transformación para determinar las coordenadas oficiales POSGAR07 (época 2006.632).

Ante cualquier inquietud o consulta técnica envíe un correo electrónico a ppp@ign.gob.ar

Team members

Principal- and coinvestigators

Graduate Students

Mara Figueroa

Franco Sobrero

Bennett Kellmayer (starting in Fall 2024)

gomez.124@osu.edu Questions? ¿Preguntas? Thank you for your attention! ¡Muchas gracias por la atención!