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* Scripps Orbit and Permanent Array Center (SOPAC)
research group. Maintains operations of California
Spatial Reference Center (CSRC) with staff, facilities
and infrastructure

CSRC is a Support Group of UCSD, a non-profit, public
research university promoting outreach to non-
academic users

CSRC Governance Executive Committeerepresenting
academia, federal, state and local agencies and the
private sector (mostly volunteers).
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SIO NOAA/NGS FY 23 Geospatial Modeling Competition Award

FY 2023 Geospatial Modeling Program
Geospatial Modeling Grant Number: NOAA-NOS-NGS-2023-2007815

NSRS Intra-Frame Deformation Model and New SIOQ Geodesy Program

Proposed project start and end dates: October 1, 2023 to September 30, 2028
Cooperative Agreement

Recipient Name: The Regents of the University of California, San Diego

Recipient Unique Entity Identifier number: Scripps Institution of Occanography:
QJSHMDK7MRM3

Principal Investigator:
Yehuda Bock
University of California San Diego/Scripps Institution of Oceanography (UCSD/SIO)
Institute of Geophysics and Planetary Physics (IGPP)
ybock{@ucsd.edu; (858) 245-9518

Co-Investigators (UCSD/SIO):
David Sandwell, Adnan Borsa, Yun Fialko. Jamin Greenbaum, Jennifer Haase,
Matthew Mazloff, Mark Memfield, Mark Zumberge, Helen Fricker, Robert Mellors

Financial representative (names, organization, and contact information):
Rose Madson
Institute of Geophysics and Planetary Physics
Scripps Institution of Oceanography, UC San Diego
9500 Gilman Drnive # 0225, L.a Jolla, CA 92093-0225
rmadson@ucsd.cdu; (858) 534-4552

Authorized Representative (name, organization, and contact information:
Mr. William Park III, Contract and Grant Officer
Scripps Institution of Oceanography
9500 Gilman Dnve #0210, La Jolla, CA 92093-0210
wparki@ucsd.edu; (858) 822-1350

Funding Request: Collaborators:

Year 1 $1,300,000 Calt

Year 2 $1,300,000 d . ra ”5.

Year 3 $1,300,000 CaliforniaDWR

Year 4 $1,300,000 East Los Angeles City College

Year 5 $1,300,000
Total $6,500,000



SIO NOAA/NGS FY 23 Geospatial Modeling Competition Award

Our collaboration with NGSincludes three activities:

) 1)

2)

3)

Create a formal Geodesy Program at SIO to address the nationwide deficiency of geodesists.
Expand current geophysics curriculum— funding for 5 graduate students

Develop an Intra-Frame Deformation Model (IFDM) to supplement the upcoming National Spatial
Reference System for users in regions of significant ground motions, using GNSS and InSAR/GNSS
displacement fields (funded by NASA projects) and underlying geophysical models. CSRC will
exercise the IFDM through its community of public, private and academic users of precise spatial
referencing in our challenging region of secular and transient crustal movements.

[Investigate a unified (marine/terrestrial) vertical reference frame, through measurements of sea
surface topographyfrom remotely-sensed observations (e.g., SWOT, ICESat-2,



Geodesy Track at SIO Geophysics
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Five years of funding for five graduate students, preferably
U.S. Citizens

Students expected to follow the new Geodesy track with the
existing Geophysics Curriculum Group and have a geodesy-
related thesis. [One or more of the students will focus on
time dependent geodetic reference systemfor western
North America based on combined GPS/GNSS and INSAR
— will interact with NGS employees].

Have already taken on two students (one first year, one
second year)

|dentified three new 2024-2025 PhD applicants
Forming internal and external education committees

For five graduate student researchers: Salary + benefits
$202,809; tuition remission - $116,145 (Year 2 or project)
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Focus of Natural Hazards Mitigation: U.S. West Coast
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Geodesy Curriculum at SIO (PhD, MSc)

SIO course | Title Instructor(s)
number

229 Reference Frames and Global Gravity Borsa/Bock

(new) GNSS Geodesy (new in 2024) Haase

236 Satellite Remote Sensing Fricker/Sandwell
237 Space Geodesy Seminar Fialko/Haase/Sandwell
(new) Radar Interferometry Sandwell/Mellors
(new) Geodetic Field Work and Aircraft Gravity Greenbaum

239 Seafloor Geodesy Zumberge/Sandwell
223 A/B Geophysical Data Analysis Agnew

210 Introduction to Physical Oceanography Talley

Curriculum will include 9 graduate courses including six that are already offered in the
Geophysics Curricular group (upgraded with additional material) and three more in
development; includes support for five graduate students to enhance the nation’s pool of
geodetic scientists.

SI0 Faculty: David Sandwell, Jennifer Haase, Yehuda Bock, Adrian Borsa, Yuri Fialko, Jamin Greenbaum,
Matthew Mazloff, Mark Merrifield, Mark Zumberge, Helen Fricker, Robert Mellors
Collaborators: Humberto Gallegos, East Los Angeles City College
NGS: Jacob Heck (Subject Matter Expert); Dana Caccamise, Pacific Southwest Regional Advisor (CA, NV)



Geodesy Courses - 1

Geodesy Program Curriculum

Reference Frames and Global Gravity — (SI0 229) Borsa/Bock

U

OCOoOoo0oOood

Reference systems and reference frames

Earth’s moments of inertia and J»

Definition and derivation of the geoid

Laplace’s equation and spherical harmonics

Global Gravity Models

Geometnc measuremenis: VLBI, SLR, GNSS

Satellite gravimetric measurements: LAGEQOS, GRACE, other satellites
Time-variable reference frames

Time-variable gravity

GNSS Geodesy — (SIO 239) — Haase

I s o B

Introduction to geophysical interpretation of geodetic time series

Elements of geodesy: coordinates, the ellipsoid, the geoid, reference frames
Satellite orbits: Keplerian orbits and GNSS satellites

GNSS signal propagation and parameter estimation

GNSS precise point positioning applications to seismotectonics

GNSS signal propagation applications to atmospheric remove sensing.
GNSS reflection: soil moisture and sea level and the vertical datum

Satellite Remote Sensing — (S10 236) - Fricker and Sandwell

U

OooooooOgogood

Space Geodesy Seminar (S10 237) — Fialko, Haase, and Sandwell

Oo0OOooOod

Overview of remote sensing

Platforms and orbits

Electromagnetic radiation, polarization
Founer transform mtroduction

Spectra, Fourier transforms, and diffraction
Thermal radiation

Propagation, dispersion, and scattering
Image processing and classification

Optics, stereo, and electro-optical systems
Passive microwave systems

Radar and laser altimetry

Scattering and Synthetic Aperture Radar (SAR)

Introduction to SAR
Introduction to InSAR
Basic InSAR Processing
GNSS Field Surveys
Basic GNSS Processing

InSAR Time Series and current topics in geodetic time series



Radar Interferometry — (expanded from UNAVCO short course and new textbook) —

OOooOoooOoOoood

|

Geodesy Courses - 2

Sandwell, Mellors, Fialko

Essentials of satellite remote sensing
Principles of synthetic aperture radar
Satellite orbits

SAR image formation

Interferometric SAR

Coherence, filtering, gradient, and geocoding
Phase unwrapping

SAR modes

Troposphere, 1onosphere, and tide corrections
Time series and corrections

Geodetic Field Work and Aircraft Gravity — (new) Greenbaum

U

o

Theoretical methods of geoid estimation from regional gravity surveys
Acquisition and processing of geodetic data at Pinon Flat Observatory
Processing of aircraft gravity, GNSS, INS and lidar data

Processing of aircraft photogrammetry data

UAV opcrations, safety, and logistics

Final data processing, interpretation, and presentation of results

Introduction to Physical Oceanography — (S10 210) — Talley

OOoo0ocOood

Physical properties of sea water

Observational tools and data analysis methods

Dynamics including geostrophy

Gyres, boundary currents, circulation and dynamic ocean topography
Waves and tides

Climate and the oceans

Seafloor Geodesy — (810 239) Zumberge and Sandwell

U
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|

Secafloor geodesy overview

Ocean environment sound propagation

GNSS — Acoustics

Wave gliders and tour of SIO Marine Facility labs
Bottom pressure and gravity

Tilt, fiber optic strain, and DAS

Processing of scafloor geodesy data

Geophysical Data Analysis - (SIO 223) — Agnew

U
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Orthogonality for functions

Multidimensional Fourier transform and Hankel transform
Discrete-time sequences and operations, including convolution
Data collection and the sampling of continuous functions

Digital filters, especially Finite Impulse Response filters
Simulating lumped-parameter systems with digital filters
Sequences of random vanables and stationary processes

The power spectral density of a stationary random function

The simplest estimator for the power spectrum, the periodogram
Multitaper estimations of the power spectrum

Prewhitening of series using prediction-error filters to reduce bias
Statistical descriptions for pairs of random data

Stationary processes in the plane and the power spectrum for these



Proposed Undergraduate Course Title: Geodesy and Geospatial Information

Course justification and content objectives: Geodesy is the study of Earth’s size (geometry), shape (gravity field) and
deformations (e.g., plate tectonic motions, subsidence). It provides access to a well-defined spatial reference system for
precise geospatial information (latitude, longitude, height, elevation with respect to sea level) used for positioning,
navigation, surveying and mapping. Geodesy is also an important discipline within the earth, atmosphericand
oceanographic sciences, using observations of GPS and other satellite navigation constellations, remote sensing platforms
(satellite and drone), and various terrestrial sensors. It is a data- and analysis-intensive discipline increasingly requiring
modern data science methods. This introductory course will provide students with a solid backgroundin geospatial systems
for eventual employment in the public and private sectors. The course will also serve as a pipeline to the geodesy track at
SIO/Earth Sciences and to other academic institutions and to alleviate the nationwide deficiency of geodesists. The objective
is to provide basic knowledge of geodetic concepts for Earth and data scientists and the underlying geodetic framework for
precise spatial information.

Learning objectives:

(1) Acquire basis concepts of geodetic science

(2) Provide overview of geodetic instrumentation and observations

(3) Develop elementary skills in geodetic data analysis

(4) Explore existing geodetic infrastructure and data repositories

(5) Experience hands on visualization and manipulation of geospatial information

(6) Understand the underlying geodetic framework for precise spatial information systems
(7) Provide example of data science applicationsin solving geodetic problems

Preferred background: statistics, linear algebra, Matlab/Python



SIO NOAA/NGS FY 23 Geospatial Modeling Competition Award

Our collaboration with NGS includes three activities:

1)

) 2)

3)

Create a formal Geodesy Program at SIO in support of the nationwide deficiency of geodesists.
Expand current geophysics curriculum— funding for 5 graduate students

Develop an Intra-Frame Deformation Model (IFDM) to supplement the NSRS for users in regions
of significant ground motions, using GNSS and InNSAR/GNSS displacement fields (funded by NASA
projects) and underlying geophysical models. CSRC will exercise the IFDM through its community
of public, private and academic users of precise spatial referencing in our challenging region of
secular and transient crustal movements.

[Investigate a unified vertical reference frame, including a marine geoid optimized to be consistent
with the full spectrum of observations from modern gravimetric geoids (e.g., GRAV-D, ICGEM),
remotely-sensed observations (e.g.,, SWOT, ICESat-2), in situ ocean observations and assimilating
ocean models, and the TRF.]



California Spatial Reference System
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* Under contract to Caltrans, CSRC estimated geodetic ITRF 2014 /ﬁ NES—
coordinates and geoidal heights for the California Spatial (X,Y,Z) \ ¥ !—> NADS3
Reference Network (CSRN) of ~900 stations, currently at the !

“Epoch Date” of 2017.50; A new Epoch Date processed in -
ITRF2020 will be published in 2024. x Geodetic Coordinates

* The coordinates & heights represent California’s Spatial
Reference System, according to the Public Resources Code. h=H+N

* The CSRS is aligned with the National Spatial Reference
System (NSRS), published by the National Geodetic Survey. [
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Intra-frame Deformation Model (IFDM) — Dynamic Datum

Estimate a position at any location and
point in time with respect to a
reference epoch, based on the
interpolation of weekly displacement
grids. The final upgraded weekly model
(right) here shown for the east
component is the sum of the
interseismic displacement field
modeled by Zeng and Shen (2017,
upper left) and the surface
interpolation of residuals (lower left).
The resulting time-dependent grid on
the right contains both linear and non-
linear corrections. Source: Klein et al.
(2019).




Weekly Displacement Grids (Secular Motions + Transients)
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SCIP Dynamic Datum Utility

SOPAC Coordinate Interpolator Prompt

Translate coordinates across epochs
Info and references = Contact

Input
© Single Point () List of Points

Format
Input Datum WGS84 (Lat, Lon, Height) 2
Qutput Datum WGS84 (Lat, Lon, Height) e
Date Format Decimal Year *
Lat/Lon Format Decimal ¥
Height Units Feet *

Location
Latitude (N) 37.52957564
Longitude (E) -120.22199169
Ellipsoidal Height (ft) (optional) 120.5
T-in (range: 2000-present) 20235
T-out (range: 2000-present) 20175

Get Coordinates Get InSAR Time Series

http://sopac-adj.ucsd.edu/scip/
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INSAR/GNSS Integration for Higher Spatial Resolution

Typical continuous Conceptual diagram for integrated
GNSS station (SIO5) synthetic aperture radar (InSAR)
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INSAR/GNSS Integration: Crustal Deformation Cycle

Interseismic |  mmE=———mmm Coseismic —_,—_- Postse:smlo
342 -50-40-30-20-10 0 LOS (mm/yr)| -600-300 0 300 600 LOS (mm) 0 10 LOS (mm)

~118° ~116° 118" ~116° —118° ~116°

(A) Estimated interseismic velocity field, (B) Estimated coseismic displacement field and
(C) Cumulative estimated postseismic displacements for a 48-day period following the
event. Squares are locations of GNSS stations. Note changes in scale between panels.
(Guns et al. 2022).
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Our collaboration with NGS includes three activities:

1)

2)

mm) 3)

Create a formal Geodesy Program at SIO in support of the nationwide deficiency of geodesists.
Expand current geophysics curriculum— funding for 5 graduate students

Develop an Intra-Frame Deformation Model (IFDM) to supplement the NSRS for users in regions
of significant ground motions, using GNSS and InNSAR/GNSS displacement fields (funded by NASA
projects) and underlying geophysical models. CSRC will exercise the IFDM through its community
of public, private and academic users of precise spatial referencing in our challenging region of
secular and transient crustal movements.

[Investigate a unified vertical reference frame, including a marine geoid optimized to be consistent
with the full spectrum of observations from modern gravimetric geoids (e.g., GRAV-D, ICGEM),
remotely-sensed observations (e.g.,, SWOT, ICESat-2), in situ ocean observations and assimilating
ocean models, and the TRF.]



Reference Surfaces for Unified Vertical Reference Frame

Unified (marine/terrestrial)
vertical reference frame through
measurements of sea surface
topography— funded by 5-year
NGS grant. Led by Matt Mazloff
and graduate student Tommy
Stone (one of the NGS fellows for
geodesytrack)
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