

RDML Gerd Glang, NOAA April 9, 2015

Adapted from Paper for US Hydro 2015, National Harbor MD By LCDR Michael O. Gonsalves, NOAA Douglas Brunt, Canadian Hydrographic Service, Christina Fandel, NOAA, Patrick Keown, NOAA

Background

• In 2014, the Arctic Regional Hydrographic Commission responded to a request by the Arctic Council's Protection of the Arctic Marine Environment (PAME) working group on the status of Arctic Charting.

- Acknowledgements:
- Canadian Hydrographic Service
- Norwegian Mapping Authority
- Danish Geodata Agency

Isn't the Arctic already charted?

• Chart coverage doesn't equal data quality...

ARHC's methodology to assess charting adequacy:

- 1. Assess confidence of the present hydrographic holdings (Age of data, Type of coverage, etc.).
- 2. Divide ocean into general depth bands (shallow, mid-depth, deep) factoring in seafloor complexity.

Ex: across a broad flat shelf, 30m could be considered "deep"; whereas, in areas with the potential for sharp, sudden rises in the seafloor, 50m could be considered "shallow")

3. Intersect confidence (#1) with depth bands (#2) to develop potential areas of concern.

Ex: Higher conf. hydro plus deeper depths = Lower concernEx: Lower conf. hydro plus shallower depths = Higher concern

- 4. Assess historic traffic patterns as they relate to the areas of concern (#3).
- 5. Generate maps and statistics which can guide decision-making processes.
 - Ex: Hydrographic organizations can determine survey priorities
 - Ex: Coast Guards can determine where to stage equipment for or spill response events.

	Relativ	/e Risk
Data type:	Low	High
Confidence of	Newer; 'full'	Older; partial
Hydrographic Data	bottom coverage	bottom coverage
Water Depth	Deep	Shallow
Density of Traffic	Light traffic	Heavy traffic

International Bathymetric Chart of the Arctic Ocean (IBCAO), General Bathymetric Chart of the Oceans (GEBCO), NOAA Environmental Satelite; Data, & Information Service (NESDIS), National Geophysical Data Center (NGDC)

Sand detter

Phase 1: Confidence of Hydrographic Data...

			Confidence Lo	evel	
Country	Data Quality Metric	High	Medium	Low	Unassessed
United States and Canada	CATZOC	Category A : Controlled, systematic survey with high position and depth accuracy. Data acquired using multibeam echosounder, channel, or mechanical sweep system.	Category B : Controlled, systematic survey achieving similar depth accuracy to Category A surveys, but with less position accuracy. Data acquired using modern survey echosounder.	Category C : Opportunistic survey achieving low depth and position accuracy. Equipment not specified.	Unassessed
Norway and Denmark	Equipment Type	Multibeam echosounder.	Singlebeam echosounder.	Pre-acoustic survey equipment or equipment not specified.	Unassessed

Step 1: Confidence of Hydrographic Data...

1. Determine Confidence of Hydrographic Holdings. Measuring Equipment Used High Confidence Age of Data Med. Confidence Surveying Technique Low Confidence Other Unassessed

Step 2: Depth and Seafloor Complexity...

Step 2: Depth and Seafloor Complexity...

Step 3: Intersection of Confidence & Depth...

3. Intersect Areas of Confidence with Depth Areas to determine Potential Areas of Concern.

Step 3: Intersection of Confidence & Depth...

Step 3: Intersection of Confidence & Depth...

- Already, we have a reasonable hierarchy for a determination of survey priorities.
- One could reasonably argue that all three of the bays marked with the '*' are worthy of consideration for updated bathymetry.
- ... still vast swaths of ocean; so, where are folks navigating?

Step 4: Incorporation of vessel traffic...

4. Extract "High Consequence" Vessel Traffic Tracklines and Intersect with Potential Areas of Concern.

- Notice there are three shallow bays with an Unassessed confidence (marked with an *)...
- While all three were previously identified as potential areas of concern, only the center one experiences heavy traffic (thus, it could be increased in survey priority over the others).

Step 5: Generate metrics...

5. Compute Area Geometry of Potential Areas of Concern and Linear Distance Traversed by Vessel Traffic within each Area type.

Higher Consequence Vessels:

- Tankers
- Cargo and Tugs
- Passenger Vessels

Output:

- Frequency of Vessels transiting within Areas of Higher/Lower Concern...
- ... thus quantifying whether region is adequately charted.

Step 5: Arctic-wide metrics...

		Con	nbination	of Canada	a, Denma	rk, Norwa	yTv	wo factors at play:
					Cont	fidence L	evel	
	AREA	High			Medium		•	Hydrographic offices are
		sq. km	%Total		sq. km	%Total		surveying where vessels
(E	Shallow	51,151	0.7%		154,062	2.1%		are going.
epth (Mid-Depth	53,158	0.7%		102,116	1.4%	•	Vessels are navigating
٥	Deep	301,997	4.2%	20%	6,100	2.3%		where there is high
	Total	406,306	5.6%	4	422,278	5.8%		1,200,440, 16,6% hat 5,209,023, 72.0%
								confidence bathymetry.

		Cor	mbination	of Canad	la, Denma	ark, Norwa	ay and	United States	study ar	eas		
					Con	fidence L	.evel					
TF	RAFFIC	High			Medium			Low		_	Unassesse	d
	unne	LNM	%Total		LNM	%Total		LNM	23%		LNM	%Total
(E	Shallow	477,412	9.1%		127,673	2.4%		17,800	0.3%		211,972	4.0%
pth (Mid-Depth	576,983	11.0%		71,396	1.4%		69,372	1.3%		70,048	1.3%
De	Deep	1,419,646	27.0%	77%)3,136	2.0%		1,399,784	26.6%		711,046	13.5%
	Total	2,474,041	47.1%		302,205	5.7%		1,486,956	28.3%		993,066	18.9%
				,	Tatal	L. Income M	and the set	Miles of Test	En (Carrol	the set is	5 050 000	

Total Linear Nautical Miles of Traffic (Combined): 5,256,268

How does the United States compare?

0

United States metrics...

					Con	fidence L	.evel					
	ARFA	High			Medium			Low		_	Unassesse	d
		sq. km	%Total		sq. km	%Total		sq. km	76%	Ď	są. km	%Total
Ê	Shallow	7,151	0.4%		46,340	2.4%		61,288	3.2%		101,443	5.3%
pth (Mid-Depth	2,280	0.1%		48,647	2.6%		150,830	7.9%		252,610	13.2%
De	Deep	3,613	0.2%	24%	0 6,111	1.4%		368,836	19.3%		838,347	44.0%
	Total	13,044	0.7%		121,098	6.3%		580,954	30.5%		1,192,400	62.5%

					Con	fidence L	.evel					
TR	RAFFIC	High			Medium			Low		_	Unassesse	d
		LNM	%Total		LNM	%Total		LNM	20%	,)	LNM	%Total
(î	Shallow	5,595	0.3%		31,657	1.4%		11,598	0.5%		160,641	7.3%
spth (Mid-Depth	2,034	0.1%		40,244	1.8%		66,028	3.0%		24,854	1.1%
De	Deep	320,822	14.5%	80%	21,633	1.0%		1,393,156	62.9%		137,675	6.2%
	Total	328,451	14.8%		93,534	4.2%		1,470,782	66.4%		323,170	14.6%

United States

'Whole' Arctic

Two methods for improving the percentage of traffic within these areas of high confidence bathymetry:

- Targeted surveying in heavily transited areas of high concern.
- Development of offshore transit corridors.

(je	Shallow	477,412	9.1%
spth (i	Mid-Depth	576,983	11.0%
ŏ	Deep	1,419,646	27.0%
	Total	2,474,041	47.1%

• 'High Confidence' regions proxy for modern survey work...

Targeted surveys...

 Port Clarence & Kotzebue Sound: relatively shallow, low confidence bathy in areas that are heavily transited.

• Point Hope & Cape Prince of Wales: mariners diverting preferred tracks due to low confidence bathymetry.

Transit Corridors...

- Partnering with the U.S. Coast Guard to develop an offshore transit corridor between Aleutians and Bering Strait.
- Increase high confidence bathymetry, encouraging mariners to alter transits into these corridors.

Transit Corridors...

Of course, some caution must be exhibited when drawing conclusions from AIS data...

- AIS data extracted between June 2012 July 2013.
- When the supposition is "retreating sea ice will lead to increased marine traffic", past navigation trends (while informative) are of limited value.

Speaking towards Arctic charting adequacy...

- On the one hand, only a small percentage of the Arctic (20%), can be characterized as being of lower concern...
- ... however, a disproportionately large percentage of the vessel traffic (77%) occurs within this region.

Identifying survey priorities in the Arctic...

- This study suggests a targeted risk-based approach, elevating the priority of shallow regions, with low quality bathymetric data that are heavily transited.
- In addition, the U.S. will pursue the development of offshore survey corridors in broad regions of high concern.