A Risk-based Methodology of Assessing the Adequacy of Charting Products in the Arctic Region: Identifying the Survey Priorities of the Future

Presented to the NOAA Hydrographic Services Review Panel
RDML Gerd Glang, NOAA
April 9, 2015

Adapted from Paper for US Hydro 2015, National Harbor MD By LCDR Michael O. Gonsalves, NOAA
Douglas Brunt, Canadian Hydrographic Service, Christina Fandel, NOAA, Patrick Keown, NOAA
Background

• In 2014, the Arctic Regional Hydrographic Commission responded to a request by the Arctic Council’s Protection of the Arctic Marine Environment (PAME) working group on the status of Arctic Charting.
Area of Study

Acknowledgements:
• Canadian Hydrographic Service
• Norwegian Mapping Authority
• Danish Geodata Agency
Isn’t the Arctic already charted?

- Chart coverage doesn’t equal data quality...
ARHC’s methodology to assess charting adequacy:

1. Assess confidence of the present hydrographic holdings (Age of data, Type of coverage, etc.).
2. Divide ocean into general depth bands (shallow, mid-depth, deep) factoring in seafloor complexity.
 Ex: across a broad flat shelf, 30m could be considered “deep”; whereas, in areas with the potential for sharp, sudden rises in the seafloor, 50m could be considered “shallow”)
3. Intersect confidence (#1) with depth bands (#2) to develop potential areas of concern.
 Ex: Higher conf. hydro plus deeper depths = Lower concern
 Ex: Lower conf. hydro plus shallower depths = Higher concern
4. Assess historic traffic patterns as they relate to the areas of concern (#3).
5. Generate maps and statistics which can guide decision-making processes.
 Ex: Hydrographic organizations can determine survey priorities
 Ex: Coast Guards can determine where to stage equipment for or spill response events.
Methodology

1. Determine Confidence of Hydrographic Holdings.

- Measuring Equipment Used
- Age of Data
- Surveying Technique
- Other

Assessing Arctic Survey Adequacy Methodology Flow Chart

2. Define Depth Bands based on Seafloor Complexity.

- Simple: 0-20m 20-50m > 50m
- Complex: 0-100m 100-200m > 200m

- Depth + Seafloor Complexity

3. Intersect Areas of Confidence with Depth Areas to determine Potential Areas of Concern.

- (e.g. Higher Confidence and/or Deeper Depths)

- Lowest Concern
- Low Concern
- Med. Concern
- High Concern
- Highest Concern

- (e.g. Lower Confidence and/or Shallower Depths)

- Satellite-Observed Vessel Traffic Patterns

- Higher Consequence Vessels:
 - Tankers
 - Cargo and Tugs
 - Passenger Vessels

- Output:
 - Frequency of Vessels transiting within Areas of Higher/Lower Concern...
 - ... thus quantifying whether region is adequately charted.

5. Compute Area Geometry of Potential Areas of Concern and Linear Distance Traversed by Vessel Traffic within each Area type.
<table>
<thead>
<tr>
<th>Data Type</th>
<th>Relative Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confidence of Hydrographic Data</td>
<td>Low: Newer; 'full' bottom coverage</td>
</tr>
<tr>
<td></td>
<td>High: Older; partial bottom coverage</td>
</tr>
<tr>
<td>Water Depth</td>
<td>Low: Deep</td>
</tr>
<tr>
<td></td>
<td>High: Shallow</td>
</tr>
<tr>
<td>Density of Traffic</td>
<td>Low: Light traffic</td>
</tr>
<tr>
<td></td>
<td>High: Heavy traffic</td>
</tr>
</tbody>
</table>
Phase 1: Confidence of Hydrographic Data...

<table>
<thead>
<tr>
<th>Country</th>
<th>Data Quality Metric</th>
<th>Confidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States and Canada</td>
<td>CATZOC</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Category A: Controlled, systematic survey with high position and depth accuracy. Data acquired using multibeam echosounder, channel, or mechanical sweep system.</td>
</tr>
<tr>
<td>Norway and Denmark</td>
<td>Equipment Type</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Category B: Controlled, systematic survey achieving similar depth accuracy to Category A surveys, but with less position accuracy. Data acquired using modern survey echosounder.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Category C: Opportunistic survey achieving low depth and position accuracy. Equipment not specified.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unassessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pre-acoustic survey equipment or equipment not specified.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unassessed</td>
</tr>
</tbody>
</table>
Step 1: Confidence of Hydrographic Data...

1. Determine Confidence of Hydrographic Holdings.

- Measuring Equipment Used
 - High Confidence
- Age of Data
 - Med. Confidence
- Surveying Technique
 - Low Confidence
- Other
 - Unassessed

Legend:
- High confidence
- Med. confidence
- Low confidence
- Unassessed
Step 2: Depth and Seafloor Complexity...
Step 2: Depth and Seafloor Complexity...

- **Shallow**: 0-20m
- **Mid-depth**: 20-50m, > 50m
- **Deep**: > 200m

2. Define Depth Bands based on Seafloor Complexity.

- **Simple**: 0-20m, 20-50m, > 50m
- **Complex**: 0-100m, 100-200m, > 200m

Legend:
- Shallow (0-20m)
- Mid-depth (20-50m)
- Deep (>50m)
Step 3: Intersection of Confidence & Depth...

3. Intersect Areas of Confidence with Depth Areas to determine Potential Areas of Concern.

(e.g. Higher Confidence and/or Deeper Depths)

- Lowest Concern
- Low Concern
- Med. Concern
- High Concern
- Highest Concern

(e.g. Lower Confidence and/or Shallower Depths)
Step 3: Intersection of Confidence & Depth...
Step 3: Intersection of Confidence & Depth...

- Already, we have a reasonable hierarchy for a determination of survey priorities.
- One could reasonably argue that all three of the bays marked with the ‘*’ are worthy of consideration for updated bathymetry.
- ... still vast swaths of ocean; so, where are folks navigating?
Step 4: Incorporation of vessel traffic...

- Notice there are three shallow bays with an Unassessed confidence (marked with an *)....
- While all three were previously identified as potential areas of concern, only the center one experiences heavy traffic (thus, it could be increased in survey priority over the others).
Step 5: Generate metrics...

5. Compute Area Geometry of Potential Areas of Concern and Linear Distance Traversed by Vessel Traffic within each Area type.

Higher Consequence Vessels:
- Tankers
- Cargo and Tugs
- Passenger Vessels

Output:
- Frequency of Vessels transiting within Areas of Higher/Lower Concern...
- … thus quantifying whether region is adequately charted.
Step 5: Arctic-wide metrics...

Two factors at play:

- Hydrographic offices are surveying where vessels are going.
- Vessels are navigating where there is high confidence bathymetry.
How does the United States compare?
United States metrics...

AREA

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>High (sq. km)</th>
<th>%Total</th>
<th>Medium (sq. km)</th>
<th>%Total</th>
<th>Low (sq. km)</th>
<th>%Total</th>
<th>Unassessed (sq. km)</th>
<th>%Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shallow</td>
<td>7,151</td>
<td>0.4%</td>
<td>46,340</td>
<td>2.4%</td>
<td>61,288</td>
<td>3.2%</td>
<td>101,443</td>
<td>5.3%</td>
</tr>
<tr>
<td>Mid-Depth</td>
<td>2,280</td>
<td>0.1%</td>
<td>48,647</td>
<td>2.6%</td>
<td>150,830</td>
<td>7.9%</td>
<td>252,610</td>
<td>13.2%</td>
</tr>
<tr>
<td>Deep</td>
<td>3,613</td>
<td>0.2%</td>
<td>6,111</td>
<td>0.4%</td>
<td>368,836</td>
<td>19.3%</td>
<td>838,347</td>
<td>44.0%</td>
</tr>
<tr>
<td>Total</td>
<td>13,044</td>
<td>0.7%</td>
<td>121,098</td>
<td>6.3%</td>
<td>580,954</td>
<td>30.5%</td>
<td>1,192,400</td>
<td>62.5%</td>
</tr>
</tbody>
</table>

TRAFFIC

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>High (LNM)</th>
<th>%Total</th>
<th>Medium (LNM)</th>
<th>%Total</th>
<th>Low (LNM)</th>
<th>%Total</th>
<th>Unassessed (LNM)</th>
<th>%Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shallow</td>
<td>5,595</td>
<td>0.3%</td>
<td>31,657</td>
<td>1.4%</td>
<td>11,598</td>
<td>0.5%</td>
<td>160,641</td>
<td>7.3%</td>
</tr>
<tr>
<td>Mid-Depth</td>
<td>2,034</td>
<td>0.1%</td>
<td>40,244</td>
<td>1.8%</td>
<td>66,028</td>
<td>3.0%</td>
<td>24,854</td>
<td>1.1%</td>
</tr>
<tr>
<td>Deep</td>
<td>320,822</td>
<td>14.5%</td>
<td>21,633</td>
<td>1.0%</td>
<td>1,393,156</td>
<td>62.9%</td>
<td>137,675</td>
<td>6.2%</td>
</tr>
<tr>
<td>Total</td>
<td>328,451</td>
<td>14.8%</td>
<td>93,534</td>
<td>4.2%</td>
<td>1,470,782</td>
<td>66.4%</td>
<td>323,170</td>
<td>14.6%</td>
</tr>
</tbody>
</table>
United States

AREA

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>High</th>
<th>%Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shallow</td>
<td>7,151</td>
<td>0.4%</td>
</tr>
<tr>
<td>Mid-Depth</td>
<td>2,280</td>
<td>0.1%</td>
</tr>
<tr>
<td>Deep</td>
<td>3,613</td>
<td>0.2%</td>
</tr>
<tr>
<td>Total</td>
<td>13,044</td>
<td>0.7%</td>
</tr>
</tbody>
</table>

‘Whole’ Arctic

Two methods for improving the percentage of traffic within these areas of high confidence bathymetry:

- Targeted surveying in heavily transited areas of high concern.
- Development of offshore transit corridors.

TRAFFIC

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>High</th>
<th>%Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shallow</td>
<td>5,595</td>
<td>0.3%</td>
</tr>
<tr>
<td>Mid-Depth</td>
<td>2,034</td>
<td>0.1%</td>
</tr>
<tr>
<td>Deep</td>
<td>320,822</td>
<td>14.5%</td>
</tr>
<tr>
<td>Total</td>
<td>328,451</td>
<td>14.8%</td>
</tr>
</tbody>
</table>

‘High Confidence’ regions proxy for modern survey work...
Targeted surveys...

- Port Clarence & Kotzebue Sound: relatively shallow, low confidence bathy in areas that are heavily transited.
- Point Hope & Cape Prince of Wales: mariners diverting preferred tracks due to low confidence bathymetry.
Transit Corridors...

- Partnering with the U.S. Coast Guard to develop an offshore transit corridor between Aleutians and Bering Strait.
- Increase high confidence bathymetry, encouraging mariners to alter transits into these corridors.
Proposed Trackline Survey Plan to Address the USCG-Proposed PARS Transit Corridor between the Aleutian Islands and Bering Strait

Red lines acquired by USCG
Blue lines acquired by NOAA
Total corridor width - 7500 meters
Proposed line spacing - 500 meters

Transit Corridors...
Of course, some caution must be exhibited when drawing conclusions from AIS data...

- When the supposition is “retreating sea ice will lead to increased marine traffic”, past navigation trends (while informative) are of limited value.
Speaking towards Arctic charting adequacy...

• On the one hand, only a small percentage of the Arctic (20%), can be characterized as being of lower concern...

• ... however, a disproportionately large percentage of the vessel traffic (77%) occurs within this region.

Identifying survey priorities in the Arctic...

• This study suggests a targeted risk-based approach, elevating the priority of shallow regions, with low quality bathymetric data that are heavily transited.

• In addition, the U.S. will pursue the development of offshore survey corridors in broad regions of high concern.