San Francisco Bay, California

San Francisco Bay, the largest harbor on the Pacific coast of the United States, is more properly described as a series of connecting bays and harbors of which San Francisco Bay proper, San Pablo Bay and Suisun Bay are the largest. Depths of 29 to 40 feet are available for deep-draft vessels to San Francisco, Oakland, Alameda, Richmond and Redwood City in San Francisco Bay proper; to Stockton on the San Joaquin River; and to Sacramento through the lower Sacramento River and a deepwater channel. Much of the local navigation is by light-draft vessels and barges.

The extensive foreign and domestic commerce of San Francisco Bay is handled through the several large ports that are the terminals for many transpacific steamship lines, airlines and transcontinental railroads.

The entrance to San Francisco Bay is through Gulf of the Farallones and the narrow Golden Gate. The gulf extends from Point San Pedro on the south for 34 miles to Point Reyes on the north and has a greatest width of 23 miles from Farallon Islands on the west to the mainland.

The first 8 miles of coast from Point San Pedro to San Francisco Bay entrance consists of whitish bluffs that reach a height of 600 feet, then a 3-mile sand beach extends to the entrance. Shelter Cove, on the north side of Point San Pedro, provides shelter from the east storms with good holding ground in gray sand bottom. San Pedro Rock, close to the point and 100 feet high, also gives some protection in south weather.

The Greater Farallones National Marine Sanctuary has been established to protect and preserve the natural, cultural and historical resources in the waters surrounding the Farallon Islands, including offshore of the Marin and Sonoma county coasts to Bodega Head. The sanctuary boundary includes the estuarine waters of Bolinas Lagoon, Tomales Bay, Estero Americano, Estero de San Antonio and Bodega Bay but not Bodega Harbor. Visitor use is encouraged for boating, diving, snorkeling, fishing, swimming, kayaking and wildlife viewing. (See 15 CFR 922.80 through 922.85, chapter 2, for limits and regulations.)

Farallon Islands, 23 miles west of San Francisco Bay entrance, are rocky islets extending northwest for 7 miles. Southeast Farallon, the largest of the group, actually consists of two islands separated by a narrow impassable gorge. The larger east island is pyramidal in shape and 350 feet high; a small-boat landing is on the...
Enforcement of Navigation Rules in San Francisco Bay

For any vessel operating within a narrow channel or fairway east of the COLREGS Demarcation Line, Rule 9 of the Inland Navigation Rules (33 CFR §83), Narrow Channels, applies.

The following locations are designated as narrow channels or fairways for the purpose of enforcing the Inland Navigation Rules (33 CFR §83) within San Francisco Bay. This list is not all-inclusive, but identifies areas where deep draft commercial and public vessels routinely operate.

1. All traffic lanes, separation zones and precautionary areas within the San Francisco Bay Region’s Regulated Navigation Area (RNA) defined in 33 CFR §165.1181 including:
 - Golden Gate Traffic Lanes Golden Gate Precautionary Area
 - Central Bay Traffic Lanes
 - Central Bay Precautionary Area
 - North Ship Channel RNA
 - Pinole Shoal Channel RNA
 - Benicia-Martinez Railroad Bridge RNA
 - Southampton Shoal Channel/Richmond Harbor RNA
 - Oakland Harbor RNA

2. Point Potrero Reach/Turn
3. Richmond Harbor Channel
4. Santa Fe Channel
5. Oakland Inner Harbor from Inner Harbor Channel Light 8 to, and including Brooklyn Basin South Channel
6. Oakland Outer Harbor
7. Alameda Naval Air Station Channel
8. South San Francisco Bay Channels between the Central Bay Precautionary Area and Redwood Creek Entrance Light 2
9. Carquinez Strait between the Pinole Shoal Channel RNA and the Benicia-Martinez Highway Bridge
10. Mare Island Strait between Mare Island Light 2 and Mare Island Causeway Bridge
11. Suisun Bay Channels between the Benicia-Martinez Highway Bridge and Suisun Bay Light 34
12. New York Slough between Suisun Bay Lighted Buoy 30 and San Joaquin River Light 2
13. Sacramento River and Sacramento Deep Water Ship Channel from Suisun Bay Light 34 to the Port of Sacramento
14. San Joaquin River from San Joaquin River Light 2 to the Port of Stockton

For any vessel west of the COLREGS Demarcation Line operating within the Off San Francisco Traffic Separation Scheme, Rule 10 of the International Regulations for Preventing Collisions at Sea 1972 (72 COLREGS), Traffic Separation Schemes, applies.

The following areas are designated Traffic Separation Schemes per 33 CFR §167.400-406.

- Off San Francisco: Precautionary Area
- Off San Francisco: Northern Approach
- Off San Francisco: Southern Approach
- Off San Francisco: Western Approach
- Off San Francisco: Main Ship Channel
- Off San Francisco: Area to be Avoided

South side. Farallon Light (37°41'57"N., 123°00'07"W.), 358 feet above the water, is shown from a white conical tower on the highest peak of the island. Dwellings are on the lowland on the south side of the island. Fisherman Bay, just north of Farallon Light, is somewhat protected by several rocky islets on the west side and affords anchorage in 8 fathoms in the outer part. Boats can be landed on a small sand beach on the largest islet. Hurst Shoal, 0.6 mile southeast of Farallon Light, is covered 22 feet and breaks only in heavy weather.

Middle Farallon, 2.3 miles northwest of the light, is a 20-foot single black rock 50 yards in diameter; several rocks covered 5 to 7 fathoms are within 0.7 mile south and southwest of it.

North Farallon, 6.5 miles northwest of Farallon Light, consists of two clusters of bare precipitous islets and rocks from 91 to 155 feet high, 0.9 mile in extent, and 0.3 mile wide; submerged rocks surround them.

Fanny Shoal, 9.8 miles northwest of Farallon Light and 14 miles southwest of Point Reyes, is 2 miles in extent and covered 2 to 30 fathoms. Noonday Rock, covered 3 1/4 fathom, rises abruptly from 20 fathoms and is the shallowest point of the shoal; it is the principal danger in the north approach to San Francisco Bay. A lighted bell buoy is about 0.7 mile west of the rock. Noonday Rock derives its name from the clipper ship that struck it in 1862 and sank within an hour, in 40 fathoms.

Cordell Bank, 27 miles northwest of Farallon Light and 20 miles west of Point Reyes, is about 6 miles long and 3 miles wide; the bank is covered 20 to 40 fathoms, but depths increase rapidly outside it.
The Cordell Bank National Marine Sanctuary has been established to protect and conserve the special, discrete, highly productive marine area of Cordell Bank and its surrounding waters and to ensure the continued availability of the areas ecological, research, educational, aesthetic, historical and recreational resources. (See 15 CFR 922, chapter 2, for limits and regulations.)

ENC - US5CA97M
Chart - 18647

Point Reyes, 18 miles north of Farallon Light, is a bold, dark, rocky headland 612 feet high at the west and higher extremity of a ridge running in an east direction for 3 miles. It is an excellent radar target in thick weather. There is lowland north of the point, so that from north and south, and from seaward in hazy weather, it usually appears as an island. The point is visible for over 25 miles.

Point Reyes Light (37°59'44"N., 123°01'23"W.), 265 feet above the water, is shown from a platform on top of a square building on the west extremity of the point. A sound signal is at the light. Two rocks, 275 yards west of the light, are covered about 3 feet and break in a moderate swell.

Drakes Bay, named after English explorer Sir Francis Drake, who anchored here in 1579, is northeast of the 1-mile-long 200-foot-high, narrow peninsula that forms the easternmost part of Point Reyes. White cliffs commence at the southwest angle of the bay and curve round to the northeast for about 6 miles, ending at high white sand dunes. This curving shoreline forms Drakes Bay, which affords good anchorage in depths of 4 to 6 fathoms, sandy bottom, in heavy northwest weather. Several lagoons back of the north shore empty into the bay through a common channel that is navigable by shallow-draft vessels with local knowledge.

Chimney Rock lies close under the outer end of the Drakes Bay peninsula. The area between Chimney Rock and the 5-fathom curve, 0.4 mile east and southeast, breaks in moderate weather. A lighted whistle buoy is moored 0.6 mile southeast of the rock.

Drakes Bay is used extensively in heavy northwest weather, and many fishing vessels operate from here during the season. A fish wharf is about midway along the inner side of the peninsula. A visible wreck is about 100 feet east of the fish wharf in about 37°59'41"N., 122°58'19"W. Visible and submerged piles west of the fish wharf are a hazard.

From the sand dunes near the east part of Drakes Bay, cliffs 100 to 200 feet high extend 5 miles southeast to Double Point, which has two high spurs, 0.4 mile apart, projecting 200 to 300 yards from the general coastline. A small 47-foot-high island is 300 yards off the northwest spur, and a 54-foot-high rock is close under the lower and lower southeast spur. From Double Point to Bolinas Point, about 3.5 miles southeast, the coast is bold with high cliffs behind narrow sand beaches.

Bolinas Point, 15.3 miles southeast of Point Reyes Light, is 160 feet high and the west extremity of the comparatively level land extending east to Bolinas Lagoon. An aerolight and numerous radio towers are 0.6 mile north of the point.

Duxbury Point, 16.5 miles southeast of Point Reyes Light, is 160 feet high and yellow in color. The point is the south edge of the tableland west of Bolinas Lagoon.

Duxbury Reef, extending 1.2 miles southeast of Duxbury Point, is long, narrow and partly bare at low water. A ledge covered 9 to 36 feet extends from the reef to about 1.4 miles south of the point; a lighted buoy is about 2 miles south of the point. Great care must be exercised in passing this area.

Warning
It was reported that in heavy weather strong north currents resulting from prolonged south winds may exist in the area from Duxbury Reef to Golden Gate.

Charts - 18645, 18649

Bolinas Bay, east of Duxbury Point, is an open bight 3.5 miles wide between Duxbury Point and Rocky Point. The bay affords shelter in northwest weather in 24 to 36 feet, sandy bottom. Care must be taken to avoid Duxbury Reef and the dangers extending up to 0.7 mile east of it. Bolinas Lagoon is separated from the bay by a narrow strip of sandy beach that is cut by a narrow shifting channel. The lagoon is shoal and entered only by small boats with local knowledge. The entrance has a depth of less than 3 feet.

Rocky Point is 100 feet high and shelving. Numerous detached rocks are within 200 yards of the high and precipitous cliffs on the south side of the point.

The 6-mile coast between Rocky Point and Point Bonita is very rugged and broken. The cliffs, which are seaward ends of spurs from Mount Tamalpais, rise to heights of over 500 feet and are cut by deep narrow valleys stretching inland.

Point Bonita, on the north side of the entrance to Golden Gate, is a sharp black cliff 100 feet high, increasing to 300 feet on its seaward face, 0.3 mile north. From northwest it shows as three heads. Point Bonita Light (37°48'56"N., 122°31'46"W.), 124 feet above the water, is shown from a 33-foot white tower on the south head. A mariner-radio-activated sound signal at the light is initiated by keying the microphone five times on VHF-FM channel 81A. A tower and radar antenna operated by the San Francisco Vessel Traffic Service is prominent on the north head about 0.3 mile from the light. In summer the cliffs are white with bird droppings, but the first heavy rain restores them to their natural black color. There are a few detached rocks surrounding the point, but these do not extend over 200 yards offshore.
Bonita Cove, east of Point Bonita, is occasionally used as an anchorage by small vessels. The anchorage is close under Point Bonita in about 36 feet.

Mount Tamalpais, 7 miles north of Point Bonita, is visible for over 60 miles in clear weather. From south and west it shows three summits, the westernmost with two radar domes is the highest and the easternmost with a lookout tower is the sharpest. The mountain is covered with bushes and scrub trees, giving it a dark appearance that contrasts strongly with the surrounding hills, especially in summer when the hills assume a light reddish color.

San Francisco Approach Lighted Whistle Buoy SF (37°45′00″N, 122°41′34″W) is 9 miles west-southwest of San Francisco Bay entrance. The buoy is red and white and is equipped with a racon.

San Francisco Bar, a semicircular shoal with depths less than 36 feet, is formed by silt deposits carried to the ocean by the Sacramento and San Joaquin River systems. The bar extends from 3 miles south of Point Lobos to within 0.5 mile of Point Bonita off the southern coast of Marin Peninsula; the extreme outer part is about 5 miles west-southwest of San Francisco Bay entrance. Potatopatch Shoal, the north part of the bar on Four Fathom Bank, has depths from 24 to 28 feet.

Warning

Very dangerous conditions develop over the bar whenever large swells, generated by storms far out at sea, reach the coast. A natural condition called shoaling causes the large swells to be amplified and increase in height when they move over the shallow water shoals. This piling up of the water over the shoals is worsened during times when the tidal current is flowing out (ebbing) through the Golden Gate. Outbound tidal current is strongest about 4 hours after high water at the Golden Gate Bridge and attains a velocity in excess of 6 knots at times. The incoming large swells are met by outbound tidal current causing very rough and dangerous conditions over the bar. Steep waves to 20 or 25 feet have been reported in the area. Mariners should exercise extreme caution as the bar conditions may change considerably in a relatively short period of time.

The most dangerous part of the San Francisco Bar is considered to be Four Fathom Bank. Bonita Channel, between the shoal and the Marin coast, can also become very dangerous during large swell conditions. The safest part of the bar is the Main Ship Channel through the center of the bar. But even that area can be extremely dangerous when the tidal current is ebbing.

Golden Gate, the passage between the ocean and San Francisco Bay, is 2 miles wide at the west end between Point Bonita and Point Lobos, but the channel is reduced in width to 1.5 miles by Mile Rocks and to less than 0.7 mile by the Golden Gate Bridge pier. Depths in the passage vary from 108 feet to over 300 feet.

Point Lobos, the south entrance point to the Golden Gate, is high, rocky and rounding with black rugged cliffs at its base. A large water tank is on the summit. The Cliff House is near the south part of the west face of the point; high and rocky Seal Rocks are just offshore.

Mile Rocks, 700 yards northwest of the sharp projecting point off Lands End on the north face of Point Lobos, are two small 20-foot-high black rocks about 100 feet apart. Mile Rocks Light (37°47′34″N., 122°30′37″W.), 49 feet above the water, is shown from an orange and white horizontally banded tower on the outer and larger rock; a sound signal is at the light.

Passage between Mile Rocks and Point Lobos should not be attempted because of the covered and visible rocks extending over 300 yards from shore and the rocks covered 6 and 14 feet south of Mile Rocks Light.

The south shore of the Golden Gate extends in a gentle curve northeast for 2 miles to Fort Point, forming a shallow bight called South Bay. The cliffs rise abruptly from narrow beaches, except near the middle of the bight where a valley terminates in a sand beach 0.3 mile long. Sailing craft are sometimes obliged to anchor here when becalmed, or when meeting an ebb current, to avoid drifting onto Mile Rocks, but the anchorage is uncomfortable and it is difficult to get underway from it.

Fort Point projects slightly from the high cliffs and is marked by a square red brick fort with a stone seawall in front. The fort, which is obscured by the south end of the Golden Gate Bridge, and 29 acres of land adjacent to the fort are part of the Fort Point National Historic Site. The fishing wharf at Fort Point is unsafe for mooring because of surge conditions.

The north shore of the Golden Gate is bold and rugged, with reddish cliffs rising abruptly from the water’s edge to over 600 feet.

Point Diablo, 1.4 miles east of Point Bonita, rises abruptly from a 0.1-mile sharp projection to a height of over 200 feet with deep water on all sides. A light is shown from a white house on the end of the point; a sound signal is at the light.

The mile-long shore between Point Diablo and Lime Point forms a shallow bight with steep cliffs. Near the middle of the bight the cliffs are cut by a narrow valley that ends in a low beach at the shore.

Lime Point, 2.5 miles east of Point Bonita, is high and precipitous and rises abruptly to a height of nearly 500 feet in less than 0.3 mile. A light is shown from a pole at the end of the point.

Golden Gate Bridge, crossing the Golden Gate from Fort Point to Lime Point, has a clearance of 225 feet at the center of the 4,028-foot-wide channel span between the 740-foot-high supporting towers; the least clearance of 211 feet at the south pier. Two scaffolds located in the main navigation channel span and one scaffold in the southern span reduce vertical clearance by approx 12 feet and are lighted at night with red lights. The Golden Gate Bridge District will move the scaffolding upon 48 hours advance notice for the passage of vessels. Scaffoldings...
is moved to the piers when not in use. Mariners should contact the Golden Gate Bridge at 415–923–2230. The center of the span is marked by a fixed green light with three fixed white lights in a vertical line above it and by a private sound signal and racon; a private light and sound signals are on the south pier. When approaching Golden Gate Bridge in the eastbound traffic lane in fog, channel Buoy 2 sometimes provides a radar image that indicates the location of the south pier of the bridge. Aero obstruction lights mark the tops of the bridge towers.

Traffic Separation Scheme

Traffic Separation Scheme San Francisco is off the entrance of San Francisco Bay and inside the Golden Gate into San Francisco Bay—see chart 18645 and 33 CFR 167.1 through 167.15 and 167.400 through 167.406, chapter 2, for limits and regulations. These schemes are designated to aid in the prevention of collisions at the approaches to major harbors and along heavily traveled waters but are not intended in any way to supersede or to alter the applicable Navigation Rules. Separation zones are intended to separate inbound and outbound traffic and to be free of ship traffic. Separation zones should not be used except for crossing purposes. Mariners should use extreme caution when crossing traffic lanes and separation zones. Rule 10 of the Navigation Rules applies to this Traffic Separation Scheme. Note—parts of the charted Traffic Separation Scheme have been amended by the International Maritime Organization (IMO) and have not been updated in the Code of Federal Regulations. (See IMO COLREG.2/Circ.64.)

Traffic Separation Scheme San Francisco is composed of directed traffic areas, each with one-way inbound and outbound traffic lanes separated by defined separation zones, a precautionary area and a pilot boat cruising area. The scheme is recommended for use by vessels approaching or departing San Francisco Bay but is not necessarily intended for tugs, tows or other small vessels that traditionally operate outside of the usual steamer lanes or close inshore.

The precautionary area off the entrance to San Francisco Bay is inscribed by a circle with a radius of 6 miles centered on San Francisco Approach Lighted Whistle Buoy SF with the traffic lanes fanning out from its periphery. Extreme caution must be exercised in navigating within the precautionary area as both incoming and outgoing vessels use the area while making the transition between San Francisco Main Ship Channel and one of the established directed traffic areas as well as maneuvering to embark and disembark pilots. Vessels are advised to maintain a 1 mile closest point of approach with other vessels while transiting the precautionary area. It is recommended that all vessels in the precautionary area guard VHF-FM channels 13 and 14.

A circular area to be avoided, with a 0.5 mile radius centered on the San Francisco Approach Lighted Whistle Buoy SF, is established in the precautionary area of the San Francisco Traffic Separation Scheme. This area is for the protection of the lighted whistle buoy. Mariners are cautioned that the buoy cannot be safely used as a leading mark to be passed close aboard and are requested to stay outside that area.

When not calling at San Francisco mariners are urged to sail direct between Point Arguello and Point Arena so as to pass the San Francisco Bay area to the west of the Farallon Islands and clear of the San Francisco Traffic Separation Scheme. In this manner through coastwise traffic will avoid crossing the directed traffic areas and/ or precautionary area.

The pilot boat cruising area is about 1 mile northeast of the San Francisco Approach Lighted Whistle Buoy SF. (See pilotage for San Francisco Bay, this chapter.)

An additional Traffic Separation Scheme has been established through the Main Ship Channel and Golden Gate into San Francisco Bay. The scheme consists of one-way traffic lanes separated by a separation line and, after entry into San Francisco Bay, includes a precautionary area, a regulated navigation area and recreation areas. For purposes of International Navigation Rule 10, this scheme has been adopted by IMO seaward of the demarcation line. (See Traffic Separation Schemes, chapter 1, for additional information).

Vessel Traffic Service

Vessel Traffic Service San Francisco serves San Francisco Bay, its seaward approaches and its tributaries as far inland as Stockton and Sacramento. Participation is mandatory for certain vessels within navigable waters of the United States. (See 33 CFR 161.1 through 161.23 and 161.50, chapter 2, for limits and regulations.)

The purpose of the San Francisco Vessel Traffic Service (VTS) is to coordinate the safe, secure and efficient transit of vessels in San Francisco Bay including its approaches and tributaries in an effort to prevent accidents with the possible associated loss of life, damage to property and the environment. VTS also fully supports Coast Guard and other public service missions through its unique communications and surveillance capabilities. The Vessel Traffic Center (VTC), located on Yerba Buena Island in San Francisco, is staffed 24 hours a day, seven days a week by Coast Guard personnel.

The VTS uses radar, closed-circuit television and VHF-FM radiotelephone to gather information and uses VHF-FM radiotelephone to disseminate information. Information provided by the VTS is mostly generated from vessel reports; this information can therefore be no more accurate than the reports received from mariners coupled with the ability of VTS equipment to verify those reports. The VTS may not have first hand knowledge of hazardous circumstances existing in the VTS area. Unreported hazards may still confront mariners at any time. This service does not in any way supersede or alter applicable Navigation Rules. The owner, operator, charterer, master or person directing the movement of
the vessel remains at all times responsible for the manner in which the vessel is operated and maneuvered and is responsible for the safe navigation of the vessel under all circumstances.

The VTS maintains a continuous radiotelephone watch on VHF-FM channels 12, 13, 14, and 16. The VTS is also equipped to communicate on all VHF-FM radiotelephone channels. The radio call sign is “San Francisco Traffic Service.” After communications have been established, the abbreviated call sign “Traffic” may be used. Mariners may also contact VTS by cellular or land-line telephone at 415–556–2760.

The VTS area is divided into two sectors: offshore and inshore. The Offshore Sector consists of the ocean waters within a 38-nautical mile radius of Mount Tamalpais (37°55.8’N., 122°34.6’W.) excluding the San Francisco Offshore Precautionary Area. (The San Francisco Offshore Precautionary Area is the area within a six-mile radius of the San Francisco Approach Lighted Whistle Buoy SF.) Channel 12 VHF-FM is the designated working frequency for the Offshore Sector. At minute 15 and minute 45 of each hour, VTS makes broadcasts giving the positions, courses and speeds of participating vessels in the sector.

The Inshore Sector consists of the waters of the San Francisco Offshore Precautionary Area eastward to San Francisco Bay and its tributaries extending inland to the ports of Stockton, Sacramento and Redwood City. VHF-FM channel 14 is the designated working frequency for the Inshore Sector.

Reporting points for the San Francisco VTS area are as follows:

Offshore sector procedures

Initial check-in and sailing plan report

The Offshore Sector area is formally defined as the ocean waters within a 38-nautical mile radius of Mount Tamalpais (37°55.8’N., 122°34.6’W.) excluding the San Francisco Offshore Precautionary Area (the area within a six-mile radius of the San Francisco Sea Buoy).

This translates roughly to an arc starting at the shoreline near Bodega Head, crossing Cordell Bank, then circling southward to pass about 30 nautical miles west of the San Francisco Sea Buoy and curving eastward to the shoreline near Pescadero Point (see charts 18640 and 18680).

The eastern boundary of the Offshore Sector is a line from Duxbury Point due south to the boundary of San Francisco Offshore Precautionary Area, then following the boundary of the Precautionary Area past the “N” “W” and “S” buoys, and then due east to Mussel Rock.

When approaching from sea, check in with VTS 15 minutes from the outer boundary on VHF-FM channel 12 and report your Sailing Plan.

Sailing plan

Give the following information in your sailing plan:

- Vessel name
- Vessel type
- Position; latitude and longitude (if unable to provide coordinates then provide your bearing and range from the San Francisco Sea Buoy)
- ETA at next reporting point
- ETA at the San Francisco Sea Buoy (if inbound) or the outermost reporting point on your route (if outbound or transiting across the Offshore Sector)

Sailing Plan Amplification Reports

When your vessel is at the next reporting point, call VTS. Give the following information:

- Vessel name and position of the Offshore reporting point you are passing
- Vessel’s course and speed
- ETA at the San Francisco Sea Buoy if you are inbound
- ETA to the outermost reporting point if you are outbound

Other reports

When conducting research, engaged in naval exercises, or conducting other special operations in the Offshore Sector, report your sailing plan to VTS and include the nature of your operation. Report any emergency on board your vessel or other vessels to VTS immediately.

When you are engaged in fishing you may report this fact to VTS. However, you are not required to do so unless your vessel fits into one of the categories as described in 33 CFR 161.2, chapter 2 of this Coast Pilot.

Transiting across the offshore sector

When you are transiting across the Offshore Sector and will not enter the San Francisco Offshore Precautionary Area, call VTS on VHF-FM channel 12 and report your sailing plan when you reach the first Offshore Sector reporting point on your route. (See below list of reporting points in the Offshore Sector).

Offshore vessel traffic advisories

VTS broadcasts the positions, courses, speeds and estimated times of arrivals at reporting points of all VTS users who have reported to VTS in the Offshore Sector. VTS makes these advisories at minute 15 and minute 45 each hour. VTS strongly recommends that vessels in the area of the Offshore Sector listen to these broadcasts.

Offshore reporting point inbound

North

Bodega Head or Cordell Bank;
Point Reyes (or entering the Traffic Separation Scheme);

“N” Buoy or Duxbury Reef Buoy.

West

Approximately 30 nautical miles from the San Francisco Sea Buoy or at longitude 123°20'W.; Southeast Farallon Island (entering the Traffic Separation Scheme);

“W” Buoy.

South

Pescadero Point or approximately 30 nautical miles from the San Francisco Sea Buoy or at latitude 37°15'N.; Pillar Point (entering the Traffic Separation Scheme);

“S” Buoy or Mussel Rocks.

Inshore Sector:

- Pilot Area/Point of Entry into VTS area
- San Mateo Bridge
- Redwood Creek Entrance Light 2
- Dumbarton Bridge
- Richmond-San Rafael Bridge
- “E” buoy in San Pablo Bay
- Petaluma Channel Daybeacon 19
- Mare Island Strait Lighted Buoy 1
- Mare Island Causeway Bridge (when inbound/outbound Mare Island Strait)
- Carquinez Bridge
- Military Ocean Terminal Concord (MOTCO)
- New York Point
- Antioch Bridge
- Prisoners Point
- Rio Vista Bridge
- Sacramento Deep Water Channel Lights 51 and 65
- when secured at the destination or when departing the VTS area

For detailed information about the VTS, go to uscg.mil/d11/vtssf. The site contains links to the Users Manual, Communications Guide, Regulated Navigation Areas and other information particularly useful to commercial and recreational mariners. Vessels operating within the VTS Area defined as VTS Users are reminded of the requirement to carry a copy of the National VTS Regulations aboard their vessel and are recommended to carry a copy of the San Francisco VTS User’s Manual.

Routes

The routes for approaching San Francisco Bay are described in chapter 3 and at the beginning of this chapter under San Francisco Traffic Separation Scheme.

Taking care to avoid the circular 0.5-mile-radius area centered on San Francisco Approach Lighted Whistle Buoy SF, steer a course to enter the charted eastbound San Francisco Bay traffic lane. The recommended route for outbound vessels is via the charted westbound San Francisco Bay traffic lane to the precautionary area of the San Francisco Traffic Separation Scheme.

Vessels with a draft of 45 feet or greater bound for the deepwater anchorages south of the San Francisco-Oakland Bay Bridge or north to San Pablo Bay and Carquinez Strait should use the charted Deep Water Route east of the Golden Gate Bridge. Vessels intending to use the Deep Water Route should notify San Francisco Traffic before passing Mile Rocks. Deep draft vessels will neither meet nor overtake in the Deep Water Route. Deep draft vessels bound for Anchorage 9, south of San Francisco-Oakland Bay Bridge, should pass east of Blossom Rock then through the C-D or D-E spans of the bridge.

From the Golden Gate Bridge, vessels with drafts less than 45 feet bound for San Pablo Bay and Carquinez Strait set a course to follow the charted Traffic Separation Scheme to the precautionary area east of Alcatraz Island, thence north through the charted Traffic Separation Scheme to San Pablo Bay and Carquinez Strait.

Mariners are cautioned that the traffic lanes between Angel Island and North Point are frequently crossed by tugs with barges and self-propelled dredges. These vessels normally transit to and from the dumping ground south of Alcatraz Island.

Channels

The principal approach to San Francisco Bay is through the buoyed Main Ship Channel over the bar on bearing 070° toward Alcatraz Light. A wreck covered 62 feet lies near the middle of the channel at 37°47'23"N., 122°33'16"W. The project depth is 55 feet in the 2,000-foot wide channel. For detailed channel information and minimum depths as reported by the U.S. Army Corps of Engineers (USACE), use NOAA Electronic Navigational Charts. Surveys and channel condition reports are available through the USACE hydrographic survey website listed in Appendix A.

From north, coasters and other vessels use buoyed Bonita Channel, between the east end of Potatopatch Shoal and the shore north of Point Bonita. The channel is narrowed to 0.2 mile by several rocky patches including Sears Rock, covered 22 feet, 1.2 miles northwest of Point Bonita.

Regulated navigation areas

Security zones have been established in the entrance to San Francisco Bay (Main Ship Channel) and Golden Gate. (See 33 CFR 165.1183 and 165.1187, chapter 2, for limits and regulations.)

A regulated navigation area has been established in Golden Gate and San Francisco Bay. (See 33 CFR 165.1181, chapter 2, for limits and regulations.)

Caution

Vessels departing San Francisco Bay through Bonita Channel on the ebb current must use extreme caution
when crossing the tide rip off Point Bonita. When the bow passes the rip the stern is thrown to port and, unless promptly met, the vessel will head straight for the rocks off the point. Vessels favoring Potatopatch Shoal too closely have reported a set toward it.

Bonita Channel should not be used by large vessels. Strangers wishing to cross the bar in thick weather should either wait for clearing or take a pilot. Fog is prevalent in the Golden Gate; radar is a great aid here.

It has been reported, however, that radar targets at the entrance to San Francisco Bay may be difficult to identify at times because of ghost echoes.

Currents

The currents at the entrance to San Francisco Bay are variable, uncertain and at times attain considerable velocity. Immediately outside the bar there is a slight current to the north and west, known as the Coast Eddy Current. The currents at San Francisco Approach Lighted Whistle Buoy SF are described in some detail in the Tidal Current Tables. The currents most affecting navigation in this vicinity are the tidal currents. Across the bar the flood current converges toward the entrance and is felt sooner around Point Lobos and Point Bonita than across the Main Ship Channel. The ebb current spreads from the entrance over the bar, but the main strength is west-southwest, parallel with the south edge of the Potatopatch Shoal, and through the Main Ship Channel. In the Bonita Channel the ebb current is weak and of short duration; the flood current begins so early that during the last half of the ebb in the Golden Gate the current in Bonita Channel forms an eddy flowing southeast around Point Bonita into Bonita Cove.

In the vicinity of Mile Rocks the currents attain considerable velocity within a few minutes after slack on both flood and ebb.

In the Golden Gate the flood current sets straight in, with a slight tendency toward the north shore, with heavy overfalls both at Lime Point and Fort Point when strong. It causes an eddy in the bight between Point Lobos and Fort Point. The ebb current has been observed to have a velocity of more than 6.5 knots between Lime Point and Fort Point, and it sets from inside the bay on the north side toward the latter point. Like the flood current, it causes an eddy in the bight between Fort Point and Point Lobos and a heavy rip and overfall reaching about 0.25 mile south from Point Bonita. At the Golden Gate Bridge, large current eddies near the foundation piers cause ships to shear off course. Daily current predictions are given in the Tidal Current Tables.

Weather, San Francisco Bay

The climate of the San Francisco Bay Area is classified as a Mediterranean climate, which generally means that summers are dry, sunny and warm, and winters are wet and occasionally stormy. However, the Mediterranean climate classification is somewhat of a simplification, and in reality the Bay Area has several climate regimes, sometimes referred to as microclimates. Significant differences in temperature, winds and fog patterns over relatively short distances are due to variations in air mass between land and sea and to the complex terrain of the coastal mountain ranges. Gaps in the coastal mountain ranges further modify weather conditions on a local scale.

Spring

Storms that periodically affect the region during the winter months often continue with regularity into March, but by April the storm track begins to shift north and storms rolling inland off the Pacific become less frequent. The rainy season is typically over by mid-April, and the variation in wind direction that occurs with passing storms mostly ends by May. During spring, an area of high pressure over the Pacific gradually strengthens and moves north. Meanwhile, longer days and a more direct sun angle result in increased warming over land, particularly in the interior valleys. Warming near the surface causes air to rise and air pressures near the surface to fall. The resulting difference between high pressure over the ocean and low pressure over land bring about increased west to northwest onshore winds during the spring months. In fact, spring is generally the windiest time of the year. However, springtime weather can be highly variable and onshore breezes do not blow as consistently as they do in the summer months. The region can experience several days of generally light winds before the next round of brisk west to northwest winds kick up. Wind speeds with the stronger springtime wind events sometimes reach gale force over the coastal waters outside the Golden Gate and approach Gale Force locally in northern San Francisco Bay. West to northwest winds during the spring months decrease farther inland and are generally lighter in the delta and into the Central Valley.

Strong springtime winds over the coastal waters kick up rough and choppy seas with short period swells. The large, long-period swells that are common during the winter months still roll through the coastal waters quite often during the early spring but taper off significantly by late spring as the storm track across the Pacific becomes less active.

Persistent northwest winds along the California coast during the spring months enhance the river of surface water flowing south and parallel to the coast known as the California current. In the northern hemisphere, oceanic currents are deflected to the right by the Coriolis force. The deflection carries surface water offshore and causes cold nutrient-rich water from the bottom of the ocean to surge up along the coast. As moist air blowing across the Pacific comes into contact with the cold waters near the coast, condensation occurs and a layer of low clouds and/or fog develops. The low clouds that form in this situation are called stratus clouds. Stratus clouds are gray with generally uniform bases. They usually do not produce precipitation, although drizzle can sometimes occur if
During the months of June, July and August the dense fog is more common in San Francisco Bay, and especially in the delta and central valley, during the winter months. That type of fog is called “radiation fog.” Radiation fog is covered in more detail in the winter section.

Summer

During the months of June, July and August the Eastern Pacific high is well established offshore while a trough of low pressure is a nearly a constant feature over California’s interior. The inland low pressure is often referred to as a “thermal trough” because its formation and strength is primarily driven by strong surface heating that persists throughout the great Central Valley during the dry and sunny summer months. The pressure difference between the eastern Pacific high and thermal trough over the interior maintain both northwesterly winds over the coastal waters and onshore winds through the coastal gaps and across the bays. Persistent northwest winds over the coastal waters in turn maintain cold upwelling near the coast. Meanwhile subsidence under the strengthening eastern Pacific high produces additional warming aloft and strengthens the low level inversion, effectively placing a “cap” on the marine layer. Because these meteorological conditions are in place nearly every day in the summer, the marine layer is a semi-permanent fixture along the California coast from June through August. Fog and low clouds can remain entrenched along the coast for days, sometimes weeks, at a time.

Marine layer fog and low clouds generally begin to roll in off the ocean and spread into San Francisco Bay through the Golden Gate and gaps in the coastal mountains during the late afternoon or early evening hours, when surface heating by the sun diminishes. The fog and low clouds then typically travel east toward the Berkeley hills where they spread both north and south, eventually covering the bay and adjoining land areas. Fog and stratus are most widespread around the bay from late night until a few hours after sunrise. By mid morning the strong summer sun provides enough heating to begin dissipating the fog and stratus. Clearing typically occurs in the bay by midday but often remains over the coastal waters through the day.

How far inland the stratus and fog develop overnight depends primarily on the depth of the marine layer but also on the strength of the onshore flow. If the marine layer is shallow (i.e., less than 1,000 feet) low clouds will spread only locally inland around San Francisco Bay but seldom reach farther inland into the Delta and never into the Central Valley. A shallow marine layer typically results in more fog and reduced visibilities, especially over the coastal waters and locally into San Francisco Bay from the Golden Gate east to Alcatraz or Angel Island.

A deeper marine layer and stronger onshore flow will allow stratus to surge well inland through the delta overnight and sometimes as far inland as Sacramento and Stockton by sunrise. Inland marine surges such as these typically are characterized by low overcast conditions and lack of fog. Daytime clearing is gradual, and low clouds often persist near the Golden Gate and locally around the Bay well into the afternoon.

During the summer months winds throughout the area follow a daily cycle that is most heavily influenced by inland heating during the day and cooling at night. The general tendency during the summer is for winds to blow from high pressure offshore to low pressure over land. This sea to land wind flow is referred to as “onshore flow.” The magnitude of the onshore flow is regulated by the daily cycle of differential heating between land and sea. Because ocean temperatures remain nearly constant from day to night, the most important factor in driving the daily wind cycle is inland heating. Daytime
heating over land causes surface air pressure to drop during the afternoon hours, and the difference between high pressure over the ocean and low pressure over land increases. Onshore winds begin to increase by early afternoon and reach a peak by late afternoon into the early evening hours. Winds then gradually subside during the evening as surface heating over land decreases. Wind speeds reach their lowest point late at night and remain relatively light through mid morning before the cycle starts over again. Wind direction is generally west to east (from sea to land), but wind direction exhibits a great deal of variation on a local scale; that variation is due primarily to mountain/valley location and orientation and gaps in the coastal mountain ranges. Of course the most prominent gap in the coastal ranges is the Golden Gate and it is here onshore winds funnel inland with the least amount of resistance. Once the airflow moves through the Golden Gate, it fans out across the northern San Francisco Bay, deflected to the southeast toward the southern part of the bay and the warm Santa Clara Valley, to the northeast toward Carquinez Strait and delta and the heat of the Central Valley beyond, and toward the north into the Petaluma and Napa Valleys of the North Bay. The strongest afternoon and evening summer sea breezes occur along the route from the Golden Gate to the Central Valley, specifically past Alcatraz and the southern end of Angel Island, Point Blunt, east to Berkeley and then north past Pinole Point, northeast to the Carquinez Strait and finally east into the Delta and Central Valley where the airflow spreads out and diminishes. Afternoon and evening wind speeds frequently reach 20 to 25 knots (meeting small craft advisory criteria) in northern San Francisco Bay from mid afternoon through mid evening during the summer months. In fact, small craft advisory conditions occur nearly every day in summer through this area and wind speeds sometimes reach 30 knots locally. Gales are rare in summer but can occur during an unusually intense onshore push. Marine air spills inland through other gaps in the coastal ranges including the San Bruno gap just to the west-northwest of San Francisco Airport (SFO). Some of the strongest sea breezes occur on the west side of the Bay from Hunters Point south through the area around SFO, and small craft conditions are common here as well. Elsewhere in the Bay, summer sea breezes generally do not exceed 20 knots. Wind speeds gradually taper off throughout the Bay after sunset and reach a low point from the late night hours through late morning. On many days winds can be variable at less than 10 knots during this time. But once surface heating increases in the interior around midday, the daily cycle begins again and onshore winds began to increase.

Over the coastal waters outside of the Golden Gate, in the Gulf of the Farallones, summer winds are predominantly from the northwest, parallel to the coast and the coastal mountain ranges. Maximum wind speeds here occur from mid afternoon to mid evening, similar to the time of maximum sea breeze winds in San Francisco Bay. Wind speeds generally range from 5 to 15 knots during the night and morning hours and increases to 10 to 20 knots in the afternoon and early evening hours but can often reach 25 knots. Strongest northwest winds over the coastal waters in summer typically occur to the south of points and capes.

During the summer months seas in the coastal waters are mostly generated from local winds and therefore have a short period and tend to be choppy. Large long period swell from the open ocean contributes much less to the overall wave spectrum than in the late autumn to early spring time frame. Swell direction is predominantly from the northwest, but during the late summer swell with an south to southwest direction becomes more frequent. The southerly swells are generated from tropical storms over the Pacific. Because these swells originate a long distance from our coast, they typically have long periods, generally 15 seconds or more.

Although summer time wind patterns over the coastal waters and through the Bays and into the Central Valley are consistent in their direction and diurnal patterns, occasionally the typically wind patterns are disrupted. This disruption occurs when high pressure builds inland over the Pacific Northwest and over the Great Basin. At the same time, the trough of low pressure that usually resides over the interior of California drifts to the west and sets up over the coastal waters. Under this scenario, the usual pattern of high pressure over the ocean and low pressure over land is reversed and winds then blow from land to sea. This is called offshore flow. Because these winds originate over land, they are typically hot and dry. Also, the air mass undergoes further warming as it descends mountain ranges on its journey from inland areas to the sea. Strongest winds during offshore wind events typically occur in the hills of the northern and eastern San Francisco Bay Area during the late night and morning hours, but offshore winds can sometimes reach 20 knots or more through Carquinez Strait to the Golden Gate. Even during offshore wind events, a weak late afternoon and early evening sea breeze often develops. Often too, the start of an offshore wind event is characterized by strong and gusty northerly winds down the Sacramento Valley and across the Delta. Winds over the coastal waters during offshore wind events are usually light, except locally moderate just outside the Golden Gate.

Offshore flow events usually last no more than two or three days before the inland high pressure breaks down and onshore flow returns. Often, offshore events are followed by a phenomenon known as a “southerly surge.” A southerly surge occurs when surface air pressure over the coastal waters on the lee side of the coastal ranges drop. When the pressure along the northern California coast drops lower than along the southern California coast, a southerly wind develops. Usually, the onset of southerly winds is also accompanied by a fog bank that surges up along the coast in a very shallow marine layer. During southerly surge events, weather conditions over the coastal waters can change rapidly from light winds with clear skies, to 15 to 20 knots of southerly winds
accompanied by thick fog reducing visibilities to less than a half mile. Once the leading edge of the southerly surge reaches the Golden Gate, the colder fog-laden air mass surges inland across northern San Francisco Bay towards Carquinez Strait. Here too, weather conditions can change rapidly from light winds to southwest winds reaching 25 knots or greater. After several hours, the shallow marine layer deepens and onshore breezes spread out across a more widespread area, and locally strong winds gradually subside.

Autumn

Weather in and around San Francisco Bay is most tranquil during the months of September, October and November. The Pacific high gradually weakens while heating over the interior subsides and weakens the inland thermal trough. Pressure gradients relax and wind speeds ease over the ocean and bays. The trend toward lighter winds starts in late summer (August) and continues through autumn. Gales are almost nonexistent from August through October. Offshore wind events are most common during the autumn months. Because of the weakened sea breezes and more frequent offshore wind events, the marine layer becomes less prominent during the autumn and low clouds and fog are less prevalent than in summer. Wave heights are also at a minimum during the autumn months. Storms over the northern Pacific become stronger and more common by late October and early November. This is when long period swells from the west and northwest begin to increase along the northern and central California coast.

Winter

The storm track across the Pacific becomes increasingly active in November and also migrates to the south. By the second half of the month weather systems begin to roll through the San Francisco Bay Area. Most rainfall in the Bay Area falls between mid-November and late March, with the stormiest months being December, January and February. Late November and much of March can also have active stormy times. Some storms during the winter months can produce powerful winds and seas, conditions that can be very hazardous to the mariner.

As frontal systems approach the coast, winds from the south and southeast increase in magnitude. Typically, strongest winds in the winter occur in the hours prior to a cold frontal passage. Depending on the strength of the storm, southerly winds ahead of the cold front can easily reach 20 knots across the region, often 25 knots and sometimes gale force. Although rare, storm force winds of 48 knots or greater can occur with the strongest of these winter storms. A few notable cases of storm force winds over San Francisco Bay are December 12, 1995, and January 4, 2008. Strong south winds occur on a large scale and are not as dependent on topography and microclimates as the summer sea breeze is. Gale force winds can occur anywhere from the coastal waters east through the delta and into the Central Valley.

After frontal passage, winds veer to the southwest and eventually west and northwest. Generally wind speeds decrease significantly after frontal passage but can remain quite strong and gusty for several hours after frontal passage. On occasion, winds will veer from southeast to southwest after frontal passage, only to swing back to the south or southeast a few hours later before gradually veering back to the west and northwest.

Winter is the season with the most significant seas, both in terms of locally driven wind waves and open ocean swells that are built by long fetches of strong winds over the eastern Pacific. Seas can be confused ahead of a front with wind waves moving from south to north on top of long period swells coming in from the west or northwest. Seas can often build enough to produce breakers across the San Francisco bar, several miles offshore of the Golden Gate. These breaking waves in the open ocean present a significant danger to mariners, especially those unfamiliar with the area. Breakers across the bar are most common with a west long period swell, during maximum ebb current through the Golden Gate.

Although the strongest winds occur during the winter months, there are often long periods of tranquil weather in the winter when the storm track can shift to the north for weeks at a time. During this time, high pressure dominates the area and sets up conditions where the low levels are very stable and an inversion develops over the inland valleys. Widespread fog will develop if the surface is sufficiently moist during these times (after soaking rains), particularly in the Central Valley. This type of radiation fog can be particularly dense and persistent and is often referred to as “tule fog.” Visibilities often fall to near zero in the southern Sacramento Valley, northern San Joaquin Valley and through the Delta, making marine navigation in these areas dangerous. Lowest visibilities occur late at night through the mid morning hours. Visibilities improve by late morning and often the fog layer lifts into a low overcast during the afternoon. Sometimes if there is a light offshore flow during a tule fog event, dense fog can develop west into northern San Francisco Bay and even spread south into the south part of the bay. It is during these times that San Francisco Bay realizes its worst visibility problems.

Offshore winds during the winter months are generally light. However, locally strong and gusty easterly winds can occur through Carquinez Strait and also over the coastal waters below coastal canyons. On some clear winter mornings when winds are light from the east across most of the region, locally strong winds have been reported along the San Mateo and Marin county coasts.

Winter can be highly variable in terms of weather. Long periods of dry weather with light winds can be followed by weeks of stormy weather with only short breaks in between individual storms. Years of studies have concluded that sea surface temperature anomalies
in the equatorial Pacific can have an impact on the overall amount of precipitation and storminess across California during the winter months. When El Niño conditions exist, sea surface temperatures in the eastern tropical Pacific are above normal. Strong or moderately strong El Niño winters are characterized by higher than normal precipitation across central and southern California. However, this does not mean that individual storms with the heaviest rain and strongest winds occur during El Niño winters. In fact, two of the most powerful winter storms to pummel the region in the past 20 years occurred during non El Niño winters. The upshot is that mariners need to be prepared for the possibility of dangerous storms in any winter and not assume that navigating the open ocean and bays will be easier during non El Niño winters.

Pilotage, San Francisco

Pilotage in and out of San Francisco is compulsory for all vessels of foreign registry and U.S. vessels under enrollment not having a federal licensed pilot on board. The San Francisco Bar Pilots provide pilotage to ports in San Francisco Bay and to ports on all tributaries to the bay, including Stockton and Sacramento.

The San Francisco Bar Pilots keep one of two vessels on station at all times, the SAN FRANCISCO or the CALIFORNIA. The pilot boats are 85 feet long with a blue waterline band, international orange hull and white superstructure. The top of the cabin houses, the mast and after deck covers are orange. The word “PILOT” is shown on the fore part as well as the port and starboard sides of the midship house. The boat displays the standard day and night signals. The pilot vessel cruises on station 24 hours a day near the San Francisco Approach Lighted Whistle Buoy SF, or, in foul weather, seaward of it. Prior arrangements with the bar pilots’ office can be made by telephone 415–393–0457, telex (SF Pilot 415–371–5595), fax messages 415–982–4721, or cable (BARPILOTS, San Francisco). If prior arrangements have not been made with the pilots’ office on Pier 9, masters may give these signals upon approaching the San Francisco Approach Whistle Buoy SF:

- **Clear visibility:** by day, hoist code flag "G"; by night, four long flashes on the signal lamp. **Limited visibility:** four long blasts and lay to. The pilot boat monitors VHF-FM channels 10, 13 and 16. The pilot boats’ radio calls are SAN FRANCISCO WYZ-8288 and CALIFORNIA WYK-4689; the pilot office call is KMG-389; cable address: BARPILOTS, San Francisco. The office monitors VHF-FM channel 10. Masters or agents are requested to advise the pilots whenever there is a change in the draft, arrival or sailing time or maneuvering or equipment limitations.

The pilots board directly from the pilot boat. Pilot ladders should be rigged clear of all discharges and spouts about 10 feet from the waterline and amidship of the vessel at all times. The ladder must comply with International Maritime Organization (IMO) and IMPA recommendations and be made in one length and not consist of two lengths shackled or lashed together and should be equipped with spreaders about ten feet apart to comply with SOLAS Regulation 17, chapter 5, (not in this text). A light must be ready to illuminate the ladder if necessary. Contact pilot boat about 30 minutes prior to arrival to determine on what side the ladder should be rigged. No lines should be attached to the lower end of the ladder. A manrope, heaving line and a ring buoy with a self-igniting light must be provided; vessel speed, 6 to 8 knots.

Pilot boarding is usually conducted in all but the most severe conditions. Extensive fog conditions are often experienced. Strong currents, accelerated by river freshets in the winter and spring months, often exist and greatly alter the predicted current calculations.

The preferred anchorage for deep-draft vessels in the vicinity of the bar pilots pickup station (San Francisco Approach Lighted Whistle Buoy SF) is an area with a 1-mile radius centered in 37°49’N., 122°42’W. Anchoring offshore is strictly forbidden. Exceptions may be made for vessel engine casualties or severe weather preventing transit into port. Any vessel anchoring outside of established anchorages is required to notify the VTS immediately.

Inbound tank vessels under escort embark pilots about 1 mile west of San Francisco Approach Lighted Whistle Buoy SF.

Coast Guard

Golden Gate Coast Guard Station is about 0.4 mile north-northeast of the bridge at the entrance to Horseshoe Bay. Station Golden Gate is participating in the Coastal Weather Display Program. A 35-foot flag pole is located near the south end of the Coast Guard Station, visible to mariners exiting San Francisco Bay. Coastal warning flags will be flown from one hour before sunrise to one hour after sunset. (See illustration; chapter 1.)

Weather flags are flown only at select Coast Guard stations to supplement other weather notification sources. Light signals corresponding to these flags are not displayed at night. In all cases mariners should rely upon National Weather Service broadcasts as their primary source of government-provided weather information.

State regulations

Tank Vessel Escort Regulations have been established by the State of California for San Francisco, San Pablo and Suisun Bays. Tank vessel masters, owners and operators are expected to be familiar and in compliance with the regulations. Failure to be in compliance may result in unsafe transit delays and fines. The regulations can be found at wildlife.ca.gov or may be obtained by calling the California Office of Spill Prevention and Response 24-hour Communications Center at 916–445–0045. Tank vessel masters should contact their agent or vessel manager/owner for additional information. The
San Francisco Marine Exchange may also be able to provide mariners with additional information and can be contacted at 915–441–6600.

ENC - US5CA13M
Chart - 18650

San Francisco, one of America’s great cities, occupies the north portion of the peninsula forming the south entrance to the bay. The 3-mile north shore of San Francisco from the Golden Gate Bridge to the main waterfront includes the Presidio of San Francisco, several yacht harbors, government buildings and piers on Black Point, Aquatic Park and Fisherman’s Wharf. Shoals with depths less than 10 feet extend up to 0.2 mile from the shore.

The charted recreation area extending along this shore is intended primarily for use by recreation vessels. It should not be utilized by vessels 300 tons or more for through passage or for any other purpose, except in case of emergency or special circumstances.

Alcatraz Island, 2.5 miles east of the Golden Gate Bridge, is one of the leading marks in entering San Francisco Bay. The small island is 148 feet high and has many buildings on it. Near the northwest end of the island is a water tower, which is reported to be usually the only landmark visible when that area is in fog. Alcatraz Light (37°49’34”N., 122°25’20”W.), 214 feet above the water, is shown from a gray, octagonal pyramidal tower on the southeast part of the island. A mariner radio activated sound signal, on the northwest end of the island, is initiated by keying the microphone five times on VHF-FM channel 81A.

A rock awash is 125 yards west of the northwest end of Alcatraz Island. A lighted bell buoy is 150 yards west of the rock. The rocks and tide pools, which extend about 100 feet from the south tip of the island, are reported to cover at high water.

Mariners are advised that surveys indicate shoaling tends to build to the northwest of the disposal area south of Alcatraz Island and caution should be used in the area. A shoal oriented southwest to northeast with a least depth of 32 feet extends off the east shore of the island.

Alcatraz Island, a part of the Golden Gate National Recreation Area, is administered by the Department of Interior’s National Park Service.

Federal regulations require that prior permission to land at Alcatraz or to berth vessels at Fort Mason, Black Point and Aquatic Park must be obtained from the General Superintendent, Golden Gate National Recreation Area, Fort Mason, San Francisco, CA 94123.

A passenger ferry, which operates frequently, uses a dock on the southeast side of the island. In 1979, 28 feet was reported off the dock.

Yerba Buena Island, 345 feet high and 2.5 miles southeast of Alcatraz Island, is of small extent, irregular in shape, and covered with a scrubby growth of trees. On its summit is a former lookout tower and the Coast Guard operated San Francisco Vessel Traffic Service Operation Center and radar antenna site. San Francisco Coast Guard Station is on the east side of the island.

Treasure Island is a low filled area north of and connected by a causeway to Yerba Buena Island. Built originally for the San Francisco International Exposition of 1939–40, Treasure Island now belongs to the city of San Francisco. A light is on the north end of the island and a shoal, covered 15 feet, is off the north end of the island.

When the prevailing west winds are blowing, deep-draft vessels proceeding to the berthing area on the east side of the island may have extreme difficulty making the 90° turn from the narrow channel between the 30-foot curves southeast of Yerba Buena Island.

Naval restricted areas are off the north end of Treasure Island and between this island and Yerba Buena Island. (See 33 CFR 334.1070 and 334.1080, chapter 2, for limits and regulations.) A restricted area surrounds the Coast Guard Station off the east side of Yerba Buena

<table>
<thead>
<tr>
<th>Span</th>
<th>Horizontal Clearance</th>
<th>Vertical Clearance</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Midspan</td>
<td>Piers</td>
</tr>
<tr>
<td>Between San Francisco and Yerba Buena Island</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A–B</td>
<td>2224</td>
<td>204</td>
<td>Pier A - 174</td>
</tr>
<tr>
<td>B–C</td>
<td>1072</td>
<td>220</td>
<td>Pier B - 217</td>
</tr>
<tr>
<td>C–D</td>
<td>1078</td>
<td>220</td>
<td>Pier D - 218</td>
</tr>
<tr>
<td>D–E</td>
<td>2212</td>
<td>204</td>
<td>Pier E - 175</td>
</tr>
<tr>
<td>Between Yerba Buena Island and Oakland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G–H (main navigation span)</td>
<td>1000</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>H–I</td>
<td>413</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>I–J</td>
<td>417</td>
<td>118</td>
<td></td>
</tr>
</tbody>
</table>

Clearances are given in feet and vertical clearances are referenced to mean high water.
The skyline of the city of San Francisco is unmistakable, with several dominant landmarks: the 980-foot television tower supporting three antennas, the pyramid-shaped Transamerica Building, the Coit Tower on Telegraph Hill 3.4 miles east of the bay entrance and the Bay Bridges with their freeway elevated approaches. Inside the bay, the Bank of America Building, the Bank of America Clock Tower, the clock tower at the south end of the San Francisco-Oakland Bay Bridge, the old Ferry Building with its 240-foot clock tower on the waterfront south of Pier 1 and the U.S. Coast Guard radar tower on Yerba Buena Island are prominent.

The Ferry Building, terminal of many ferry boats, also houses the San Francisco Port Authority offices, the offices of the Marine Exchange, Inc., and the many offices and exhibits of the World Trade Center.

Prominent features

Channels

Depths of 45 feet or more are available from the Golden Gate Bridge to most of the anchorage; depths ranging from 29 to 40 feet can be taken to most of the San Francisco piers.

Anchorage

General, naval and explosives anchorages are in San Francisco Bay. (See 33 CFR 110.1 and 110.224, chapter 2, for limits and regulations.)

Warning

Two submarine pipeline areas cross San Francisco Bay within General Anchorage 9; one crosses between Metropolitan Oakland International Airport and Brisbane and the other about 1.5 miles to the south. Mariners are cautioned not to anchor in these areas. (See chart 18651)

Dangers

Anita Rock, 1.1 miles east of Fort Point and 300 yards from shore, is covered 3 feet and marked by a light.
CLIMATOLOGICAL DATA – SAN FRANCISCO, CALIFORNIA (37°37'N, 122°23'W) 8 feet (2.4 m)

WEATHER ELEMENTS

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
<th>YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMPERATURE (°F)</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>48.9</td>
<td>51.9</td>
<td>53.5</td>
<td>55.7</td>
<td>58.3</td>
<td>61.4</td>
<td>62.7</td>
<td>63.4</td>
<td>64.1</td>
<td>61.1</td>
<td>55.0</td>
<td>49.7</td>
<td>57.2</td>
</tr>
<tr>
<td>Mean daily maximum</td>
<td>55.6</td>
<td>59.1</td>
<td>60.8</td>
<td>63.7</td>
<td>66.4</td>
<td>69.9</td>
<td>71.3</td>
<td>71.9</td>
<td>73.3</td>
<td>70.2</td>
<td>62.9</td>
<td>56.2</td>
<td>65.2</td>
</tr>
<tr>
<td>Mean daily minimum</td>
<td>41.6</td>
<td>44.3</td>
<td>45.7</td>
<td>47.2</td>
<td>49.7</td>
<td>52.4</td>
<td>53.7</td>
<td>54.5</td>
<td>54.3</td>
<td>51.5</td>
<td>46.7</td>
<td>42.6</td>
<td>48.7</td>
</tr>
<tr>
<td>Extreme (highest)</td>
<td>72</td>
<td>77</td>
<td>85</td>
<td>92</td>
<td>97</td>
<td>106</td>
<td>105</td>
<td>100</td>
<td>103</td>
<td>99</td>
<td>85</td>
<td>75</td>
<td>106</td>
</tr>
<tr>
<td>Extreme (lowest)</td>
<td>26</td>
<td>30</td>
<td>31</td>
<td>36</td>
<td>39</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>41</td>
<td>37</td>
<td>31</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>VISIBILITY</td>
<td></td>
</tr>
<tr>
<td>Mean number of days</td>
<td>17</td>
<td>12</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>17</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>RECORD</td>
<td></td>
</tr>
</tbody>
</table>

- **T** = trace (not measurable) amount of precipitation

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
<th>YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRESSURE</td>
<td></td>
</tr>
<tr>
<td>Station pressure</td>
<td>1020.1</td>
<td>1019.3</td>
<td>1018.0</td>
<td>1017.5</td>
<td>1016.1</td>
<td>1014.5</td>
<td>1014.7</td>
<td>1014.7</td>
<td>1014.1</td>
<td>1016.6</td>
<td>1019.0</td>
<td>1020.3</td>
<td>1017.1</td>
</tr>
<tr>
<td>AVERAGE</td>
<td></td>
</tr>
<tr>
<td>RELATIVE HUMIDITY</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td></td>
</tr>
<tr>
<td>% of time clear</td>
<td>25.7</td>
<td>28.8</td>
<td>26.6</td>
<td>31.5</td>
<td>36.8</td>
<td>43.1</td>
<td>49.8</td>
<td>44.8</td>
<td>50.3</td>
<td>43.8</td>
<td>32.6</td>
<td>27.6</td>
<td>36.8</td>
</tr>
<tr>
<td>% of time scattered</td>
<td>16.3</td>
<td>16.2</td>
<td>19.0</td>
<td>20.4</td>
<td>20.6</td>
<td>20.1</td>
<td>19.6</td>
<td>20.6</td>
<td>17.7</td>
<td>18.4</td>
<td>18.0</td>
<td>16.6</td>
<td>18.6</td>
</tr>
<tr>
<td>% of time broken</td>
<td>17.1</td>
<td>18.2</td>
<td>21.0</td>
<td>20.2</td>
<td>18.1</td>
<td>14.3</td>
<td>13.7</td>
<td>15.1</td>
<td>14.1</td>
<td>16.1</td>
<td>18.8</td>
<td>17.0</td>
<td>17.0</td>
</tr>
<tr>
<td>% of time overcast</td>
<td>14.8</td>
<td>36.8</td>
<td>33.3</td>
<td>27.9</td>
<td>24.6</td>
<td>22.5</td>
<td>19.6</td>
<td>19.5</td>
<td>21.7</td>
<td>20.5</td>
<td>36.2</td>
<td>28.0</td>
<td>28.0</td>
</tr>
<tr>
<td>PRECIPITATION</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td></td>
</tr>
<tr>
<td>Greatest amount</td>
<td></td>
</tr>
<tr>
<td>Least amount</td>
<td></td>
</tr>
<tr>
<td>Maximum amount (24 hours)</td>
<td>5.5</td>
<td>2.2</td>
<td>1.9</td>
<td>2.3</td>
<td>1.5</td>
<td>0.8</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td>2.3</td>
<td>2.6</td>
<td>2.3</td>
<td>3.1</td>
</tr>
<tr>
<td>Mean number of days</td>
<td>14</td>
<td>12</td>
<td>15</td>
<td>11</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>11</td>
<td>13</td>
<td>120</td>
<td>50</td>
</tr>
<tr>
<td>SNOW</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td></td>
</tr>
<tr>
<td>Greatest amount</td>
<td></td>
</tr>
<tr>
<td>Least amount</td>
<td></td>
</tr>
<tr>
<td>Maximum amount (24 hours)</td>
<td>1.5</td>
<td>0</td>
<td>1.5</td>
<td>50</td>
</tr>
<tr>
<td>Mean number of days</td>
<td></td>
</tr>
<tr>
<td>WIND</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td></td>
</tr>
<tr>
<td>Speed (knots)</td>
<td></td>
</tr>
</tbody>
</table>

SEA LEVEL PRESSURE

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
<th>YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>VISIBILITY</td>
<td></td>
</tr>
<tr>
<td>Mean number of days</td>
<td>17</td>
<td>12</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>17</td>
<td>99</td>
<td></td>
</tr>
</tbody>
</table>

- Miss or blank is a missing value
Weather, San Francisco

San Francisco enjoys a marine-type climate characterized by mild and moderately wet winters and by dry, cool summers. Winter rains (December through March) account for about three-fourths of the average annual rainfall of just over 19 inches (483 mm), and measurable precipitation occurs on an average of 13 days per month during this period. Snowfall occurs but is infrequent. The greatest amount is 1.5 inches (38 mm) recorded in January 1962. Flurries have occurred in each month, December through March. There are frequent dry periods lasting well over a week. Severe winter storms with gale winds and heavy rains occur only occasionally. December is the month most likely to experience gales followed by January. Thunderstorms average five a year and may occur in any month but are usually very mild.

The summer weather is dominated by a cool sea breeze resulting in an average summer wind speed of nearly 13 knots. Winds are light in the early morning but normally reach 17 to 22 knots in the afternoon, depending on location. Where topography and man-made structures funnel the winds, higher gusts may occur in those areas.

A sea fog, arriving over the station during the late evening or night as a low stratified cloud, is another persistent feature of the summer weather. This “high” fog, occasionally producing drizzle or mist, usually disappears during the late forenoon. Despite the morning overcast, summer days are remarkably sunny. On the average a total of only 15 days during the 4 months from June through September are classified as cloudy.

Daytime temperatures are held down both by the morning low overcast and the afternoon strengthening sea breeze, resulting in daily maximum readings averaging in the lower- to middle seventies (21.7° to 23.9°C) from May through August. However, during these months occasional “hot” spells lasting a few days are experienced without the usual “high” fog and sea breeze. September, when the sea breeze becomes less pronounced, is the warmest month, with an average maximum of 73°F (22.8°C). Minimum temperatures during the summer are in the lower- to middle fifties (10.6° to 12.8°C). The all-time high temperature recorded at the International Airport is 106°F (41.1°C), recorded in June 1961.

A strong temperature inversion with its base usually at a height of 1,500 feet (458 m) persists throughout the summer. Inversions close to the ground are infrequent in summer but rather common in fall and winter. As a consequence of these factors and the continued population and economic growth of the area, atmospheric pollution has become a problem of increasing importance.

The National Weather Service maintains an office in San Francisco; barometers may be compared there or by telephone/internet—see Appendix A for addresses.

Towage

Tugboats are available in sufficient quantity for the traffic in the greater harbor.

Quarantine, customs, immigration and agricultural quarantine

San Francisco is a customs port of entry. (See Vessel Arrival Inspections, chapter 3.) Quarantine is enforced in accordance with regulations of the U.S. Public Health Service. (See Public Health Service, chapter 1.)

Coast Guard

Sector Office San Francisco is located on Yerba Buena Island. (See Appendix A for addresses.) San Francisco Coast Guard Air Station is at San Francisco International Airport. A Coast Guard base and station are on the east side of Yerba Buena Island.

The Marine Exchange of the San Francisco Bay region reports and records all Golden Gate ship arrivals and departures and conducts communications to serve the bay area commercial traffic. The station can be called 24 hours a day for relay of messages and other marine-related services on VHF-FM channels 10 and 18. The station also monitors channels 13 and 16. The ship spotting station is located in Building B, Fort Mason, about 2.5 miles east of the Golden Gate Bridge.

Harbor regulations

The Port of San Francisco is under control of the city of San Francisco, and its management is vested in the San Francisco Port Commission, in direct charge of the port director of that body. The office of the Chief Wharfinger is in the Ferry Building.

The harbor regulations are prescribed by the San Francisco Port Authority and enforced by the Chief Wharfinger.

In addition to the San Francisco Port Authority regulations, the Coast Guard Captain of the Port has issued the following supplemental regulations for vessels carrying explosives and certain hazardous bulk cargoes. Vessels entering or leaving San Francisco Bay laden with explosives (Class A or Military) having a net explosive weight in excess of 100 short tons for ships and in excess of 5 short tons for barges, or carrying certain dangerous cargo as listed in 33 CFR 160.204, may be escorted by a Coast Guard patrol craft while underway within the bay. These escorts are at the discretion of the Captain of the Port (COTP). Each vessel shall coordinate all movements with the Captain of the Port and ensure:

(a) Speed of transit shall not exceed 12 knots.
(b) No Vessel movement will occur unless visibility is a minimum of 1,000 yards, in/out or within the San Francisco Bay area.
(c) A 96-hour advance notice of arrival is required.

U.S. Coast Pilot 7, Chapter 7
Facilities in the Port of San Francisco

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Berthing Space</th>
<th>Depths¹</th>
<th>Deck Height</th>
<th>Mechanical Handling Facilities and Storage</th>
<th>Purpose</th>
<th>Owned/Operated by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pier No. 45 (Sheds B and D)</td>
<td>37°48'36"N., 122°25'06"W.</td>
<td>1.200</td>
<td>14-25</td>
<td>12</td>
<td>• Covered storage (88,150 square feet) • Six mast-and-boom derricks</td>
<td>• Receipt of seafood • Mooring fishing vessels</td>
<td>Port of San Francisco</td>
</tr>
<tr>
<td>Pier No. 35</td>
<td>37°48'35"N., 122°24'23"W.</td>
<td>2.055</td>
<td>35</td>
<td>12</td>
<td>Passenger terminal (32,000 square feet)</td>
<td>• Mooring cruise ships • Boarding passengers</td>
<td>Port of San Francisco/Metropolitan Stevedore Company</td>
</tr>
<tr>
<td>Pier No. 33</td>
<td>37°48'32"N., 122°24'19"W.</td>
<td>1.624</td>
<td>15</td>
<td>12</td>
<td>Covered storage (66,900 square feet)</td>
<td>• Receipt of seafood • Mooring fishing vessels and excursion boats</td>
<td>Port of San Francisco</td>
</tr>
<tr>
<td>Pier Nos. 17 and 15</td>
<td>37°48'09"N., 122°23'48"W.</td>
<td>2.085</td>
<td>17-35</td>
<td>12</td>
<td>• Covered storage (173,700 square feet) • Open storage (33,000 square feet)</td>
<td>Mooring floating equipment</td>
<td>Port of San Francisco/Baydelta Maritime</td>
</tr>
<tr>
<td>Pier No. 9</td>
<td>37°48'05"N., 122°23'34"W.</td>
<td>1.754</td>
<td>15</td>
<td>12</td>
<td>Covered storage (61,200 square feet)</td>
<td>Mooring floating equipment and pilot boats</td>
<td>Port of San Francisco/Blue and Gold Fleet and San Francisco Bar Pilots</td>
</tr>
<tr>
<td>Pier No. 50 Mission Rock Terminal</td>
<td>37°46'25"N., 122°22'54"W.</td>
<td>4.155</td>
<td>35-45</td>
<td>12</td>
<td>Covered storage (231,700 square feet)</td>
<td>Mooring vessels and equipment</td>
<td>Port of San Francisco/Westar Marine Services and Clean Bay Cooperative</td>
</tr>
<tr>
<td>Pier No. 54</td>
<td>37°46'11"N., 122°23'01"W.</td>
<td>1550</td>
<td>18-20</td>
<td>12</td>
<td>Covered storage (15,000 square feet)</td>
<td>• Mooring vessels • Receipt of seafood</td>
<td>Port of San Francisco/Crowley Maritime Corporation</td>
</tr>
<tr>
<td>Pier No. 70</td>
<td>37°45'43"N., 122°22'47"W.</td>
<td>2.480</td>
<td>35</td>
<td>12</td>
<td>Tank storage (404,000 barrels)</td>
<td>Mooring vessels</td>
<td>Port of San Francisco</td>
</tr>
<tr>
<td>North Container Terminal (Pier No. 80)</td>
<td>37°45'02"N., 122°22'33"W.</td>
<td>5.091</td>
<td>38</td>
<td>13</td>
<td>• Covered storage (393,000 square feet) • Four traveling container cranes (up to 40 long tons)</td>
<td>• Receipt and shipment of conventional, containerized, and roll-on/roll-off general cargo</td>
<td>Port of San Francisco/Marine Terminals Corp.</td>
</tr>
<tr>
<td>Pier No. 92</td>
<td>37°44'50"N., 122°22'48"W.</td>
<td>868</td>
<td>35</td>
<td>12</td>
<td>• Tank storage (2.9 million gallons) • Open storage (20,000 tons of sand) • Belt conveyor</td>
<td>• Shipment of tallow • Receipt of sand</td>
<td>Port of San Francisco/Darling International, Inc. and Mission Valley Rock</td>
</tr>
<tr>
<td>Pier Nos. 94 and 96</td>
<td>37°44'34"N., 122°22'13"W.</td>
<td>2.456</td>
<td>40</td>
<td>14</td>
<td>• Open storage (76 acres) • Four traveling container cranes (up to 40 long tons)</td>
<td>Mooring vessels</td>
<td>Port of San Francisco</td>
</tr>
</tbody>
</table>

Dimensions are given in feet

¹ The depths given above are reported. For information on the latest depths contact the port authorities or the private operators.

(d) Vessels shall participate in the Vessel Traffic Service (VTS) and adhere to the traffic separation scheme, except as permitted by VTS or COTP.

Wharves

The general cargo and specialized terminals of the Port of San Francisco are on the bay and on Islais Creek. All of the piers listed are owned by the San Francisco Port Authority and leased to private concerns. Only the major piers are listed in the table. The alongside depths given for each facility are reported depths. (For information on the latest depths, contact the Port of San Francisco.) Cargo at the port is handled mostly by ship’s tackle, but hoisting and heavy lift equipment is available in the port. Most piers have electrical shore power and water connections.

The Port of San Francisco is served by a Class I railroad. The port offers wharf side intermodal transfer of containers between ship and rail at both the San Francisco Container Terminals North (Pier 50) and South (Piers 94 and 96) and has a dedicated Intermodal Container Transfer Facility located adjacent to Container Terminal South with direct access to both terminals. Most of the ports’ inbound and outbound cargo moves to and from the piers by truck. The Embarcadero, a four-lane thoroughfare, provides access to most of the piers.

China Basin, 1.1 miles south of the Ferry Building, is a canal extending about 0.6 mile southwest from San Francisco Bay. The 3rd and 4th Street bascule bridges across the canal have a least clearance of 1 foot. (See 33 CFR 117.1 through 117.59 and 117.149, chapter 2, for drawbridge regulations.) The bridgetender monitors VHF-FM channel 9 and works on channels 13, 17 and 65A; call sign WXY–959, San Francisco Drawbridges. China Basin is a no anchorage zone.

Islais Creek Channel is entered 2.9 miles south of the Ferry Building. Two bascule bridges, the Illinois Street Bridge and the 3rd Street Bridge, cross the creek about 0.6 mile above the mouth; both have clearances of 5 feet. (See 33 CFR 117.1 through 117.59 and 117.163, chapter 2, for drawbridge regulations.) The 3rd Street Bridge is inoperable.
Supplies

Fuel oils, gasoline and all other marine supplies and services may be had in any desired quantity. Fuel oil is usually delivered by barge. Water can be obtained on the piers or by barge.

Repairs

San Francisco, Oakland, Richmond and Alameda have facilities for making repairs to vessels and machinery of all kinds and sizes. The largest commercial floating drydock in San Francisco has a length of 900 feet, width of 148 feet and a lifting capacity of 65,000 tons. There are several small drydocks on the San Francisco side and several marine railways and floating docks on the Oakland side.

Ferries

High speed and traditional ferries frequently operate in central/south San Francisco Bay and San Pablo Bay. Concentrations of these ferries are highest along the San Francisco Ferry Building (37°47'45"N., 122°23'35"W.) where most central bay routes terminate. Mariners are cautioned when transiting these waters that ferries may maneuver quickly when approaching and departing the dock. Departing ferries from the Ferry Building often back away from the dock. Charted ferry routes can be seen on applicable charts of the area; however, mariners are cautioned that these ferries may deviate from their routes due to inclement weather, traffic conditions, navigational hazards or other emergency conditions.

In San Francisco Bay charted ferry routes run north and south in North Channel (east of Angel Island) and in the Precautionary Area just east of Alcatraz Island. They generally run east and west in the waters between Alcatraz Island and Angel Island. The routes cross each other in the Precautionary Area (37°49'30"N., 122°24'10"W.) and about 1.2 miles south of the Richmond-San Rafael Bridge. In these areas all vessels should maintain a close watch for ferries. In San Pablo Bay, ferry routes run in both directions just south of Pinole Shoal Channel between the Richmond-San Rafael Bridge and Mare Island; one route runs east of East Brothers Island. Many ferries also operate between San Francisco’s north shore, Alcatraz and Sausalito/Tiburon. These ferries do not run along charted ferry routes. They too may back away when departing San Francisco docks and may maneuver rapidly when approaching San Francisco.

The San Francisco Harbor Safety Committee, in conjunction with the Coast Guard, has established a Ferry Traffic Routing Protocol for the area surrounding the Ferry Building terminal along the waterfront of San Francisco, the waters of central San Francisco Bay and the waters of San Pablo Bay. The protocol is intended to increase safety in the area by reducing traffic conflicts and, while not compulsory, the guidelines set forth in the protocol are strongly recommended. The Harbor Safety Committee also recommends that recreational and fishing vessels keep a close lookout when near ferry routes and avoid ferry routes whenever possible. For additional information, see the San Francisco Vessel Traffic Service site nscg.mil/d11/vtssf and San Francisco Marine Exchange site www.sfmx.org.

Communications

San Francisco is the terminus of several trans-pacific steamship lines and the port of call for numerous lines of foreign, coastal and intercoastal vessels. It is served directly by a major highway and is connected by the Bay Bridge to several others. The city is served by three transcontinental railroads; connections to two of the railroads are by barge, while one has tracks extending south and east around the south bay. San Francisco International Airport is on the west shore of the bay about 5 miles south of the city; it is served by many airlines.

Small-craft facilities

San Francisco Municipal Yacht Harbor, 1.8 miles east of the Golden Gate Bridge with a west and east basin about 0.3 mile apart, has depths of 8 to 12 feet to the berths. A light near the end of a point marks the north side of the entrance to west basin; a prominent stone tower is 0.2 mile west of the light. The east basin is protected on the north by a breakwater extending east from the west shore and on the east by a pier of Fort Mason. The seaward end of the breakwater is marked by a light. East basin is entered between the breakwater light and the pier. The harbor accommodates about 700 boats in the west and east basins. Guest berths are available; transients should report to the harbormaster’s office on the south side of the west basin for berth assignment.

Aquatic Park, 2.6 miles east of the Golden Gate Bridge, is a recreation area protected on the west by a curved pier extending out from Black Point and on the east by a pier that berths historic ships of the National Maritime Museum. The basin is closed to power vessels, and other vessels must stay offshore away from buoys marking a swimming area. The speed limit is 3 knots. Depths of 9 to 16 feet are inside the basin. Small craft can find anchorage in about 13 feet. Permission to anchor for more than 24 hours must be obtained from the Aquatic Park Ranger Station.

ENC - US5CA16M
Chart - 18651

South of San Francisco, Point Avisadero, which is the east extremity of Hunters Point, Sierra Point, Oyster Point, Point San Bruno and Coyote Point, all on the west shore of the bay, are prominent natural features. The Bayshore Freeway extends south on a filled area from the vicinity of Candlestick Point and cuts back inland.
Facilities in the Port of Redwood City

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Berthing Space</th>
<th>Depths*</th>
<th>Mechanical Handling Facilities and Storage**</th>
<th>Purpose</th>
<th>Owned/Operated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port of Redwood City</td>
<td></td>
<td>855</td>
<td>34</td>
<td>• Unloading conveyor (800/1000 tons per hour)</td>
<td>Bulk cement and general cargo</td>
<td>Port of Redwood City</td>
</tr>
<tr>
<td>Wharves 1 and 2</td>
<td>37°30’50"N.,</td>
<td></td>
<td></td>
<td>• Bulk cement pipeline and hoppers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>122°12’27"W.</td>
<td></td>
<td></td>
<td>• Adjacent to 30,000 square foot transit shed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port of Redwood City</td>
<td></td>
<td>730</td>
<td>34</td>
<td>• Unloading conveyor (300 tons/hour)</td>
<td>Scrap metal and dry bulk cargo</td>
<td>Port of Redwood City</td>
</tr>
<tr>
<td>Wharves 3 and 4</td>
<td>37°30’42"N.,</td>
<td></td>
<td></td>
<td>• Open storage area</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>122°12’42"W.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port of Redwood City</td>
<td></td>
<td>500</td>
<td>34</td>
<td>• Petroleum pipeline</td>
<td>Petroleum and liquid bulk products</td>
<td>Port of Redwood City</td>
</tr>
<tr>
<td>Wharf 5</td>
<td>37°30’20"N.,</td>
<td></td>
<td></td>
<td>• Adjacent to paved area and storage tanks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>122°12’40"W.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dimensions are given in feet
* The depths given above are reported. For information on the latest depths contact the port authorities or the private operators.
** Handling equipment: 25-ton mobile crane, tractors and forklifts.

Wharves lighted for 24-hour operation and have electric, telephone and water hookups.
USCG certified oil waste reception facility.

at Sierra Point. Sierra Point is the site of a small-boat harbor that can accommodate about 500 boats. **Oyster Point Channel** is marked by private lights and leads to a small basin. A spur channel, marked by private lights, branches off the north side of Oyster Point Channel and leads to the entrance to the small-boat harbor at Sierra Point. The basin at the end of Oyster Point Channel has two private wharves in ruins and sheds on the west side; a marina that can accommodate about 200 boats is on the south side.

Oyster Point, a low filled area, is the site of a small-boat harbor accommodating about 570 boats. An entrance channel east of the harbor is marked by private lights. Transients should report to the harbormaster’s office for berth assignment. A prominent sculptured tower is on the hill 0.7 mile south of Oyster Point; the tower is floodlighted.

The area between Point San Bruno and Coyote Point is occupied by the **San Francisco International Airport**. A **security zone** has been established in the waters surrounding the airport. (See 33 CFR 165.1192, chapter 2, for limits and regulations.)

Coyote Point is covered by a heavy growth of trees and is raised as an island. It is the most prominent point on the south bay. A small-craft harbor accommodating about 580 boats is on the east side of the point. The approach channel, marked by two private lights, had a depth of 8 feet in 2010. The harbor, operated by San Mateo County, is composed of two basins with depths of 6 to 8 feet. Transients should report to the harbormaster’s office on the northwest side of the harbor for berth assignment; guest berths are usually available and a harbor patrol boat is maintained.

The **San Mateo-Hayward Bridge** crossing the lower part of San Francisco Bay near **San Mateo** has a fixed span with a clearance of 135 feet over the main channel. The bridge is marked at mid span by a racon. An overhead power cable with a clearance of 160 feet over the main channel crosses the bay just south of the bridge. **Floodlighting** and is occupied by **San Francisco International Airport**. A security zone has been established in the waters surrounding the airport. (See 33 CFR 165.1192, chapter 2, for limits and regulations.)

Coyote Point is covered by a heavy growth of trees and is raised as an island. It is the most prominent point on the south bay. A small-craft harbor accommodating about 580 boats is on the east side of the point. The approach channel, marked by two private lights, had a depth of 8 feet in 2010. The harbor, operated by San Mateo County, is composed of two basins with depths of 6 to 8 feet. Transients should report to the harbormaster’s office on the northwest side of the harbor for berth assignment; guest berths are usually available and a harbor patrol boat is maintained.

The **San Mateo-Hayward Bridge** crossing the lower part of San Francisco Bay near **San Mateo** has a fixed span with a clearance of 135 feet over the main channel. The bridge is marked at mid span by a racon. An overhead power cable with a clearance of 160 feet over the main channel crosses the bay just south of the bridge.
The harbor accommodates about 500 small craft and 15 guest slips are maintained. The harbormaster’s office is on the southeast side of the basin.

ENC - US5CA13M
Chart - 18650

Alameda is on an island separated from the mainland by San Leandro Bay on the east and Oakland Inner Harbor and Tidal Canal on the north. A ferry terminal owned by the City of Alameda and operated by the Blue and Gold Fleet LP, is at Alameda (37°47'28"N., 122°17'38"W.). The ferry service operates daily to Oakland and San Francisco.

Coast Guard

The Coast Guard Shore Infrastructure Logistics Center is on Coast Guard Island (Government Island). A security zone has been established along the southwest side of the island surrounding the Coast Guard pier. The security zone extends into the navigation channel about 10 to 20 yards at each end. (See 33 CFR 165.1190, chapter 2, for limits and regulations.)

Ballena Bay Yacht Harbor, a large small-craft harbor, is on the east side of an island along the south shore of Alameda. The harbor offers safe refuge in storms. A depth of 9 to 10 feet is available in the channel between the island and Alameda. A fixed bridge, with a clearance of 5 feet, crosses the channel about midway along the north shore of the island.

Oakland, on the east or mainland shore opposite San Francisco, is the second largest city on San Francisco Bay. It is the main-line terminus of the transcontinental railroads entering the San Francisco Bay area.

The Port of Oakland encompasses two areas: Outer and Inner Harbors. Oakland Outer Harbor is between the Ben E. Nutter Container Terminal (Seventh Street Marine Terminal) on the south and the San Francisco-Oakland Bay Bridge approach on the north. A restricted area is in the north end of Oakland Outer Harbor adjacent to the Oakland Army Base. (See 33 CFR 334.1050 and 334.1060, chapter 2, for limits and regulations.)

Oakland Inner Harbor is that part of Inner Harbor Channel extending east from San Francisco Bay to Tidal Canal. It is adjacent to the most highly developed section of the city, bordering Oakland to the north and Alameda to the south. At the east end of the harbor, the artificial Tidal Canal leads to San Leandro Bay where a channel continues to the Metropolitan Oakland International Airport. Mariners should exercise caution when transiting Oakland Inner Harbor to prevent wake damage to boats moored at marinas along the waterway.

A restricted area is in Oakland Inner Harbor from the entrance to the east boundary of the Naval Air Station. (See 33 CFR 334.1020 and 334.1030 chapter 2, for limits and regulations.)

Channels

A federal project provides for a depth of 50 feet from the Bar Channel to and including the Oakland Outer Harbor, 50 feet in the Inner Harbor Reach, thence 35 feet from the Grove Street Pier to the Park Street Bridge Reach, thence 18 feet to Tidal Canal. For detailed channel information and minimum depths as reported by the U.S. Army Corps of Engineers (USACE), use NOAA Electronic Navigational Charts. Surveys and channel condition reports are available through a USACE hydrographic survey website listed in Appendix A.

Caution

Due to the projection of the Seventh Street Terminal, areas of slack water develop on the south side of the terminal on the flood tide and on the north side on the ebb tide. Deep-draft vessels entering the Inner Harbor on the flood tide may tend to shear to port when the bow enters the slack water. Similarly, vessels entering the Outer Harbor on the ebb tide may tend to shear starboard.

Bridges

The fixed highway bridge across Brooklyn Basin at the east end of Coast Guard Island has a clearance of 11 feet. The three highway drawbridges across Tidal Canal have a least clearance of 15 feet. The vertical lift railroad bridge across Tidal Canal has a clearance of 13 feet down and 135 feet up. The bridgetenders monitor VHF-FM channel 16 and work channel 9. (See 33 CFR 117.1 through 117.59 and 117.181, chapter 2, for drawbridge regulations.)

Quarantine, customs, immigration and agricultural quarantine

Quarantine is enforced in accordance with regulations of the U.S. Public Health Service. (See Public Health Service, chapter 1.)
Facilities in the Port of Oakland

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Berthing Space</th>
<th>Depths* (feet)</th>
<th>Deck Height (feet)</th>
<th>Mechanical Handling Facilities and Storage</th>
<th>Purpose</th>
<th>Owned/Operated by</th>
</tr>
</thead>
</table>
| Port of Oakland (Berths 20 and 21) | 37°49'09"N., 122°18'39"W. | 1,355 | 42 | 14 | • Open storage (166 acres)
• Three container cranes (30 long tons) | Receipt and shipment of containerized cargo | Port of Oakland |
| Port of Oakland (Berths 22-24) | 37°49'02"N., 122°18'56"W. | 2,870 | 50 | 14 | • Open storage (166 acres)
• Four container cranes (50 long tons) | Receipt and shipment of containerized cargo | Port of Oakland |
| TraPac Terminal (Berths 25-33) | 37°48'37"N., 122°19'41"W. | 4,283 | 50 | 14 | • Open storage (66 acres)
• Four container cranes (65 long tons) | Receipt and shipment of containerized cargo | Port of Oakland/TraPac, Inc. |
| Seventh Street Container Terminal (Berth 34) | 37°48'38"N., 122°19'53"W. | 720 | 37 | 14 | • Open storage (19 acres)
• Four container cranes (30 long tons) | Receipt and shipment of bulk cargo | Port of Oakland/TraPac, Inc. |
| Ben E. Nutter Terminal (Berths 35-38) | 37°48'26"N., 122°20'23"W. | 2,157 | 50 | 14 | • Open storage (74 acres)
• Four container cranes (50 long tons) | Receipt and shipment of containerized cargo | Port of Oakland/Seaside Transportation Services |
| Oakland International Container Terminal (Berths 55 and 56) | 37°47'52"N., 122°19'15"W. | 2,400 | 50 | 14.5 | • Open storage (120 acres)
• Four container cranes (65 long tons) | Receipt and shipment of containerized cargo | Port of Oakland |
| Oakland International Container Terminal (Berths 57-59) | 37°47'42"N., 122°18'38"W. | 3,600 | 50 | 14.5 | • Open storage (150 acres)
• Six container cranes (65 long tons) | Receipt and shipment of containerized cargo | Port of Oakland |
| Matson Terminal (Berths 60-63) | 37°47'37"N., 122°18'01"W. | 2,743 | 42 | 13.7 | • Open storage (80 acres)
• Four container cranes (50 long tons) | Receipt and shipment of containerized cargo | Port of Oakland |
| Schnitzer Steel (Berth 65) | 37°47'38"N., 122°17'33"W. | 875 | 38 | 12 | • Open storage (33 acres)
• One traveling container crane (30 long tons) | Shipment of ferrous scrap metal | Schnitzer Steel Products Co. |
| Charles P. Howard Terminal (Berths 67 and 68) | 37°47'41"N., 122°17'03"W. | 1,946 | 42 | 13 | • Open storage (50 acres)
• Four container crane (50 long tons) | Receipt and shipment of containerized cargo and automobiles | Port of Oakland/Stevedoring Services of America Terminals |

Dimensions are given in feet

* The depths given above are reported. For information on the latest depths contact the port authorities or the private operators.

Harbor regulations

The Port of Oakland is under the jurisdiction of the Board of Port Commissioners of the City of Oakland and is managed by an executive director. The port’s general offices are at 530 Water Street, Oakland, CA 94607.

Wharves

The Port of Oakland owns the facilities engaged in handling general cargo in the port, and their operation is carried out through private companies. The port also has a number of smaller piers and wharves that are used for mooring small vessels and repair work and for other purposes. Most major deep-draft facilities are listed in the table. The alongside depths given for each facility are reported depths. (For information on the latest depths contact the Port of Oakland or the facility operator.) General cargo at the port is usually handled by ship’s tackle; special handling equipment, if available, is mentioned in the description of the particular facility. Floating cranes with lifting capacities to 350 tons are available.

The port is served by two transcontinental Class I railroads. Truck connections are also available to the city’s freeway system.

Supplies

Bunker fuel, diesel oil, gasoline, water and most other marine supplies and services are available in Oakland. Bunker fuel is usually delivered by barge.

Repairs

A drydock and repair firm in Oakland has a maximum drydock capacity of 2,800 tons; marine railways here are capable of hauling out to 500 tons. All kinds of repairs are made to both hulls and engines.

Small-craft facilities

There are many small-craft facilities on both sides of the channel from Oakland Inner Harbor entrance to the airport at the south end of San Leandro Bay. Mariners should exercise caution when transiting Oakland Inner Harbor to prevent wake damage to boats moored at marinas along the waterway.

Communications

Oakland is served directly by three major highways, with connections to several others. The city is the main-line terminus of three transcontinental railroads. Metropolitan Oakland International Airport, on the bay
Facilities in the Port of Richmond

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Berthing Space</th>
<th>Depths* (ft)</th>
<th>Deck Height</th>
<th>Mechanical Handling Facilities and Storage</th>
<th>Purpose</th>
<th>Owned/Operated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port of Richmond</td>
<td>37°5'47''N.,</td>
<td></td>
<td></td>
<td></td>
<td>* Tank storage (504,500 barrels) • One 5-ton mobile crane</td>
<td>Receipt and shipment of liquid bulk products (petroleum products, chemicals, vegetable oils)</td>
<td>City of Richmond/ Paktank Corp.</td>
</tr>
<tr>
<td>Terminal No. 4 Wharf</td>
<td>122°25'46''W.</td>
<td>1,047</td>
<td>32-35</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chevron Products</td>
<td>37°5'19''N.,</td>
<td></td>
<td></td>
<td></td>
<td>* Tank storage (20.2 million barrels) • Pipelines extend from wharf to refinery</td>
<td>* Receipt of crude oil • Receipt and shipment of petroleum products</td>
<td>Chevron Products Co.</td>
</tr>
<tr>
<td>Richmond Long Wharf</td>
<td>122°24'39''W.</td>
<td>3,065</td>
<td>40-50</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port of Richmond</td>
<td>37°5'27''N.,</td>
<td></td>
<td></td>
<td></td>
<td>* Open storage (40 acres with an additional 50 acres available if needed)</td>
<td>Occasional receipt and shipment of general cargo</td>
<td>City of Richmond/ Pasha Group</td>
</tr>
<tr>
<td>Point Potrero Marine</td>
<td>122°21'50''W.</td>
<td>1,615</td>
<td>38</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminal No. 7 Wharf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCO Products</td>
<td>37°5'43''N.,</td>
<td></td>
<td></td>
<td></td>
<td>* Tank storage (737,000 barrels) • Pipelines extend from wharf to tanks</td>
<td>Receipt and occasional receipt of petroleum products</td>
<td>ARCO Products Co.</td>
</tr>
<tr>
<td>Richmond Tanker Wharf</td>
<td>122°21'53''W.</td>
<td>710</td>
<td>38</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tosco Refining</td>
<td>37°5'54''N.,</td>
<td></td>
<td></td>
<td></td>
<td>* Tank storage (857,300 barrels) • Pipelines extend from wharf to tanks</td>
<td>Receipt and shipment of petroleum products</td>
<td>Tosco Refining Co./ Tosco Refining Co. and GATX Terminals Corp.</td>
</tr>
<tr>
<td>Richmond Tanker Wharf</td>
<td>122°21'55''W.</td>
<td>836</td>
<td>37</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tosco Refining</td>
<td>37°5'58''N.,</td>
<td></td>
<td></td>
<td></td>
<td>* Tank storage (5,000 barrels) • Pipelines extend from wharf to tanks to tanks in Ref. No 5</td>
<td>Shipment and occasional receipt of petroleum products</td>
<td>Tosco Refining Co.</td>
</tr>
<tr>
<td>Richmond Barge Wharf</td>
<td>122°21'56''W.</td>
<td>836</td>
<td>37</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Gypsum</td>
<td>37°5'10''N.,</td>
<td></td>
<td></td>
<td></td>
<td>* Covered storage (40,000 tons of gypsum) • Belt conveyor (1,400 tons per hour)</td>
<td>Receipt of gyspsum rock</td>
<td>National Gypsum Co., Gold Bond Building Products</td>
</tr>
<tr>
<td>Richmond Dock</td>
<td>122°22'06''W.</td>
<td>600</td>
<td>38</td>
<td>9-11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Castrol North America</td>
<td>37°5'21''N.,</td>
<td></td>
<td></td>
<td></td>
<td>* Tank storage (85,000 barrels) • Pipelines extend from wharf to tanks</td>
<td>Receipt and shipment of petroleum products</td>
<td>Castrol North America, Incorporated</td>
</tr>
<tr>
<td>Richmond Wharf</td>
<td>122°22'26''W.</td>
<td>700</td>
<td>32</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMTT-Richmond</td>
<td>37°5'16''N.,</td>
<td></td>
<td></td>
<td></td>
<td>Tank storage: (441,200 barrels petroleum products) • Belt conveyor (1,400 tons per hour)</td>
<td>* Receipt and shipment of petroleum products • Receipt of caustic soda and paraffin wax</td>
<td>IMTT-Richmond-CA</td>
</tr>
<tr>
<td>Wharf</td>
<td>122°22'09''W.</td>
<td>650</td>
<td>38</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levin-Richmond Terminal</td>
<td>37°5'56''N.,</td>
<td></td>
<td></td>
<td></td>
<td>* Open storage (15 acres) • Five gantry cranes (25-50 tons) • Belt-conveyors (600 tons per hour)</td>
<td>* Shipments of scrap metal and petroleum coke • Receipt of miscellaneous dry bulk commodities</td>
<td>Levin-Richmond Terminal Corporation</td>
</tr>
<tr>
<td>(Berths A, B and C)</td>
<td>122°22'01''W.</td>
<td>1,450</td>
<td>34-37</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shore Terminals</td>
<td>37°5'05''N.,</td>
<td></td>
<td></td>
<td></td>
<td>* Tank storage (618,000 barrels) • Pipelines extend from wharf to tanks</td>
<td>Receipt and shipment of petroleum products</td>
<td>Shore Terminals LLC</td>
</tr>
<tr>
<td>Richmond Wharf</td>
<td>122°21'31''W.</td>
<td>700</td>
<td>33</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port of Richmond</td>
<td>37°5'49''N.,</td>
<td></td>
<td></td>
<td></td>
<td>* Tank storage (2 million gallons) • Pipelines extend from wharf to tanks</td>
<td>Receipt and shipment of edible oils</td>
<td>City of Richmond/ California Oils Corp.</td>
</tr>
<tr>
<td>Terminal No. 2 Upper Wharf</td>
<td>122°21'44''W.</td>
<td>300</td>
<td>38</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port of Richmond</td>
<td>37°5'43''N.,</td>
<td></td>
<td></td>
<td></td>
<td>* Open storage (18 acres) • Two traveling container cranes (37 ton)</td>
<td>Receipt and shipment of conventional general cargo (steel, wood products and heavy lift items)</td>
<td>City of Richmond/ Stevedoring Services of America</td>
</tr>
<tr>
<td>Terminal No. 3 Wharf</td>
<td>122°21'42''W.</td>
<td>1,109</td>
<td>38</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dimensions are given in feet
* The depths given above are reported. For information on the latest depths contact the port authorities or the private operators.

about 5 miles southeast of the city, is served by many airlines.

San Leandro Channel connects San Leandro Bay with San Francisco Bay. The channel is very narrow with shallow uneven depths at the east end. Mariners should seek local knowledge before transiting the channel. Three bascule bridges, operating simultaneously, with a minimum clearance of 20 feet at the south side of the draw, cross the channel at its east end. The bridge tender for the San Leandro Bay bridges at Alameda monitors VHF-FM channel 16 and works on channel 9; call sign: WHX 870, Bay Farm Island Bridge. (See 33 CFR 117.1 through 117.59 and 117.193, chapter 2, for drawbridge regulations.)

ENCs - US5CA12M, US5CA21M
Charts - 18649, 18653

Berkeley, the site of the University of California, adjoins Oakland and Emeryville to the north. The long pier extending into the bay is marked by a light; the
Berkeley Marina, on the north side of the long pier, is protected at the entrance by two detached breakwaters. The south breakwater is marked by a light in the center and at each end. The north breakwater is marked by lights on each end. The north side of the entrance into the harbor is marked by a private light and the south side by a private light and sound signal. Berkeley Reef, awash, is 0.9 mile northwest from the harbor entrance and marked by a light. The best water for entering the harbor is reported to be in the south entrance. Occasionally, there are reports of vessels grounding in the northern approach. The marina accommodates 1,100 boats and can provide electricity, gasoline, diesel fuel, pumpout facility and launching ramp. All vessels entering the harbor must contact the harbormaster’s office on the south side of the harbor.

Two marinas are at Emeryville, about 1.5 miles south of Berkeley Marina and can provide transient berths, gasoline, diesel fuel, electricity, water, pump-out facility and launch ramp.

Southampton Shoal Light (37°52’55”N., 122°24’01”W.), 32 feet above the water, is shown from a white cylindrical tower near the south end of the 1.6-mile-long shoal. A sound signal (bell) is at the light. A wreck covered 4 feet lies 0.6 mile to the northeast at 37°53’16”N., 122°23’18”W.

Vessels going from San Francisco Bay proper bound for Richmond usually use the 45-foot project channel through the shoal area northwest of Southampton Shoal Light.

Red Rock, 3.2 miles north-northwest of Southampton Shoal Light, is 169 feet high and prominent in the south approach. Buoyed Castro Rocks, 0.6 mile east-northeast of Red Rock, are small and low.

Richmond Harbor, on the east shore of San Francisco Bay 1.5 miles north of Southampton Shoal Light, includes the port facilities to Point San Pablo. The harbor is served by two Class I railroads and is an important oil refining center and oil shipping port.

Channels

A federal project provides for a depth of 45 feet in Southampton Shoal Channel and in the maneuvering area off Richmond Long Wharf, thence 38 feet in the channels leading to the port facilities at the Port of Richmond, to a point about 2,000 feet in Sante Fe Channel, thence 30 feet in the remainder of Sante Fe Channel and the turning basin. The channel is well marked by navigational aids. For detailed channel information and minimum depths as reported by the U.S. Army Corps of Engineers (USACE), use NOAA Electronic Navigational Charts. Surveys and channel condition reports are available through a USACE hydrographic survey website listed in Appendix A. A 10,000-foot training wall is south of the dredged channel and extends west from Brooks Island.

Regulated navigation areas

A security zone has been established around the Chevron Long Wharf. (See 33 CFR 165.1197, chapter 2, for limits and regulations.) A restricted area extends 0.3 mile offshore at Point Molate, site of a Navy fuel depot 0.8 mile north of Richmond-San Rafael Bridge. (See 33 CFR 334.1090, chapter 2, for limits and regulations.) Regulated navigation areas are in the entrance channel and between Point Richmond and Point Potrero. (See 33 CFR 165.1181, chapter 2, for limits and regulations.)

Quarantine, customs, immigration and agricultural quarantine

Quarantine is enforced in accordance with regulations of the U.S. Public Health Service. (See Public Health Service, chapter 1.)

Wharves

Liquid bulk commodities handled at the Port of Richmond consist primarily of petroleum, petroleum products, chemicals, petro-chemicals, coconut oil, tallow and molasses. Dry bulk commodities consist of coal, bauxite, gypsum, iron ore, vehicles, iron/steel products, scrap metals and containerized cargo. All major deep-draft facilities are listed in the table. The alongside depths given for each facility are reported; the operators of the wharves should be contacted for information on the latest depths. Most of the large oil wharves have hose-handling cranes. Of the facilities listed, all have truck access and most have rail connections to Class I railroads. Water and electrical shore power are available at most piers.

General cargo at the port is usually handled by ship’s tackle; special handling equipment, if available, is mentioned in the table under Mechanical Handling Facilities.

Repairs

Repairs to fishing boats, recreational craft and other types of small vessels can be made at three marine repair yards on the Santa Fe Channel. A marine railway at one of the yards has a 20-ton hauling capacity, and boat lifts to 88 tons are also available. There are five drydocks at Point Potrero, the largest having a length of 750 feet. Floating cranes here have maximum capacity of 350 tons.

Small-craft facilities

A marina and yacht club are in Richmond Marina Bay and a private yacht harbor is on the east side of Point Richmond. Available services include transient berths, gasoline, diesel fuel, electricity, water, ice, pump-out and a launching ramp.
Golden Gate Coast Guard Station is located at the entrance to Horseshoe Bay. From Point Cavallo the steep rocky shore tends north for 0.3 mile to Yellow Bluff, thence northwest for 1 mile to Sausalito. A rock, covered 5 feet, is about 100 yards east-southeast of Yellow Bluff in about 37°50.2’N., 122°28.2’W.

Richardson Bay, 2 miles north of the Golden Gate Bridge, is shoal except for the south part fronting Sausalito. In the north part of Richardson Bay, a wildlife sanctuary, established by the National Audubon Society, provides safe refuge for migratory fowl that arrive each fall. The sanctuary is closed to marine traffic from October to March. The southern edge of the sanctuary, marked by three concrete piles topped by white cones, is on a line approximately 097° True from Strawberry Point to Belvedere. A special anchorage is in Richardson Bay. Local authorities control the anchoring of vessels and placement of moorings in Richardson Bay. Mariners should contact the Richardson Bay Regional Agency at 415–289–4143 for specific information. Richardson Bay is a no-discharge zone; it is illegal for vessels to discharge any form of waste into the bay. (See 33 CFR 110.1 and 110.126a, chapter 2, for limits and regulations.) A channel leading northwest through Richardson Bay to facilities at Sausalito is marked by lights and daybeacons. A no-wake speed limit is in all channels in Richardson Bay.

Sausalito harbors some commercial fishing boats and many pleasure craft. Several boatbuilding and repair yards have marine ways, the largest of which can handle craft up to 350 tons.

The Corps of Engineers has an operations base and model current-flow basin at Sausalito.

Belvedere Cove, 3 miles north-northeast of the Golden Gate Bridge, is entered between Peninsula Point on the south and Point Tiburon on the north. Two private yacht clubs are in the cove. There are several small piers used by ferry boats about 0.2 mile west of Point Tiburon. Passenger ferry service is available between Tiburon and San Francisco and between Tiburon and Angel Island. The ruins of an abandoned railroad ferry slip is just west of Point Tiburon.

Angel Island, 3 miles northeast of the Golden Gate Bridge, is partially wooded and level on top. The irregular-shaped island is separated from the mainland by Raccoon Strait. The island, formerly an immigration detention station, is now a state park. A ferry operates from the island to Tiburon and just south of Pier 1 in San Francisco.

Point Blunt, the southeast extremity of Angel Island, terminates in a 60-foot high knob and is connected with the island by a low neck of land. Point Blunt Light (37°51’12”N., 122°25’09”W.), 60 feet above the water, is shown from a white house on the point; a sound signal is at the station. A shoal with visible and covered rocks extends south-southeast for 0.1 mile. Tide rips and swirls are heavy around the point, especially with a large falling tide.

Quarry Point, the east end of Angel Island, is a bold bluff with deepwater close-to. The wharf 0.6 mile north of the point is in ruins. The point is marked by a light. A lighted buoy is off Point Stuart, the west extremity of Angel Island. A shoal area covered 14 to 30 feet, extending southwest from Point Knox, is marked by a lighted buoy.

Ayala Cove, indenting the north side of Angel Island, about 0.6 mile northeast of Point Stuart, is reported to afford good anchorage in depths of 10 to 12 feet, mud bottom, and protection from south and west winds. Slips...
are available for day use only; mooring buoys are available for overnight stays. A pier at the state park facility in the cove is used by ferries and state park personnel.

Raccoon Strait, nearly 0.5 mile wide between Angel Island and the mainland, is used by ferry boats and pleasure craft. The tidal currents in the strait have considerable velocity, and rips and swirls are heavy at times. A midchannel course can be followed. Raccoon Shoal, covered 29 feet, is 500 yards north of Raccoon Strait Lighted Buoy A. A strong ebb current sets directly across the channel at the east entrance.

The charted recreation area extending southwest of Angel Island and including all of Raccoon Strait and Richardson Bay is intended primarily for use by recreation vessels. It should not be utilized by vessels 300 tons or more for through passage or for any other purpose, except in case of emergency or special circumstances.

Bluff Point, on the mainland and marked by a light, is the east extremity of Tiburon Peninsula 1.2 miles north of Point Stuart. PointChauncey, 0.8 miles northwest of Bluff Point, is the site of the University of San Francisco Romberg Fisheries Laboratory. Pier runs at the site are marked by lights.

Paradise Cay, a filled real estate project 2.6 miles northwest of Bluff Point, has a small-boat harbor that accommodates about 200 boats. The harbor is on the north side of the project.

Corte Madera Creek, at the head of a marshy bight about 2 miles northwest of Paradise Cay, is the site of a ferry terminal with frequent service to and from San Francisco. Corte Madera Channel leads northwest from deep water in the bay over the flats to a turning basin at the mouth of the creek. The channel and turning basin are marked by lights.

A railroad bridge, 0.4 mile above the turning basin, has a 38-foot bascule span with a clearance of 10 feet. (See 33 CFR 117.1 through 117.59 and 117.153, chapter 2, for drawbridge regulations.) The bridge remains in the open position except when trains or rail maintenance equipment are crossing the creek. The fixed highway bridges, 0.1 mile above the railroad bridge, have 35-foot channel spans with a clearance of 21 feet. Submerged obstructions that protrude 3 to 4 feet from the bottom are under the fixed bridges. The obstructions are marked by signs on either side of the bridges. In 1984, a submerged obstruction was reported on the north edge of the channel about 400 yards west of the fixed bridges. The power cables over the turning basin and creek have a least clearance of 120 feet.

Point San Quentin, at the west end of the Richmond-San Rafael Bridge, has low land on either side. The buildings of the state prison south of the bridge and the long wharf north of it are prominent. A state security zone extends off the southeast side of Point San Quentin. The buoys are orange and white and display the words “San Quentin Prison.”

San Rafael Creek, 1.8 miles northwest of Point San Quentin, is used by many small craft basing at the city of San Rafael. A dredged channel leads across the flats of San Rafael Bay into San Rafael Creek to the Grand Avenue bridges, about 1.2 miles above the mouth; a turning basin is on the south side of the channel just below the bridges. The channel entrance is marked by lights and a 293.2° lighted range. The overhead power cables near the entrance to the creek have a clearance of 125 feet. The Grand Avenue Pedestrian bridge has a 105-foot fixed span with a clearance of 4 feet. The Grand Avenue bridge, just west of the pedestrian bridge, has a 30-foot fixed span with a clearance of 4 feet.

The municipal yacht harbor is on the south side of San Rafael Creek, about 400 yards east of the turning basin, and there are numerous small-craft facilities elsewhere along the creek.

Point San Pedro, 3 miles north of Point San Quentin at the west entrance to San Pablo Bay, extends 100 yards east of 356-foot-high San Pedro Hill. Three charted brick stacks are just south from the point. There is a large quarry just north from the point.

San Pablo Bay, is nearly circular, 10 miles long in a northeast direction, with a greatest width of 8 miles. The north part consists of low marshes intersected by numerous sloughs and a large area of shoal water and mudflats that bare at extreme low water. The south shore is bolder, except between Point San Pablo and Pinole Point, where it is low and marshy for about 3 miles. Carquinez Strait joins San Pablo Bay with Mare Island Strait and Suisun Bay at its east extremity. There is considerable traffic through the bay. Deep-draft oil tankers and sugar-laden vessels pass through the bay bound for Crockett and Martinez. Lighter draft vessels pass through bound for points on Suisun Bay, and the Sacramento River to Sacramento, and on the San Joaquin River to Stockton.

Mariners are advised that winds and currents in San Pablo Bay may be particularly strong and must be taken into consideration by tankers bound for the oil terminals. Vessels transiting the Pinole Shoal Regulated Navigation Area westbound on an ebb current should use extra caution to avoid being set down on the aids to navigation following the turn at San Pablo Bay Channel Light 11.

The marked channel through San Pablo Bay extends in a gentle curve north and east from the entrance to the east end. The federal project depth is 35 feet across Pinole Shoal. For detailed channel information and minimum depths as reported by the U.S. Army Corps of Engineers (USACE), use NOAA Electronic Navigational Charts. Surveys and channel condition reports are available through the USACE hydrographic survey website listed in Appendix A.

A regulated navigation area has been established in Pinole Shoal Channel. (See 33 CFR 165.1181(e)(2), chapter 2, for limits and regulations.) Vessels that do
not meet the tonnage requirements to transit the Pinole Shoal Regulated Navigation Area follow an informal transit pattern along the 25-foot curve just to the south of Pinole Shoal between the entrance to Pinole Shoal Channel (38°00'00"N., 122°25'00"W.) and the entrance to Carquinez Strait.

A **safety zone** has been established in San Pablo Bay north of the Pinole Shoal Channel. (See 33 CFR 165.1184, chapter 2, for limits and regulations.)

General and naval anchorages are in San Pablo Bay. (See 33 CFR 110.1 and 110.224, chapter 2, for limits and regulations.)

Shoals and flats, which uncover, extend from Point San Pablo to Pinole Point, thence northeast to Lone Tree Point.

Pinole Point is a moderately high, rocky bluff, projecting about 1 mile from the southeast shore of San Pablo Bay. A T-head fishing pier extends northwest from the east side of the point. Piles and a light are off the face of the pier. The runs of a former wharf extend from the east side of the point, and numerous oil tanks are on the hills about 2 miles in back of it. About 3.5 miles east of Pinole Point, the black and white tank at a chemical fertilizer plant is prominent. A pleasure fishing pier and a small-craft harbor are at **Lone Tree Point**, 4.6 miles east from Pinole Point. A steel skeleton tower is 0.6 mile south of Lone Tree Point. Oleum, on Davis Point, is an oil town. There are many prominent oil tanks, painted in pastel colors, on the hills back of the town. Six stacks in a line southeast of Davis Point are also prominent.

The Conoco-Phillips Wharf, a T-shaped wharf, extends out from the Oleum refinery on Davis Point. In 2005, a least depth of 40 feet was alongside the 1,250-foot wharf; 1,375 feet of berthing space is available with dolphins. All four corners of the wharf are marked by private lights, and a private sound signal is at the east end; the trestle leading to the wharf is lighted at night. The deck height is 17 feet. Pipelines extend from the wharf to nearby storage tanks. The wharf is used for receipt and shipment of petroleum products and for bunkering vessels. A **security zone** has been established surrounding the wharf. (See 33 CFR 165.1197, chapter 2, for limits and regulations.)

Gallinas Creek enters San Pablo Bay about 1.5 miles northwest of Point San Pedro. The entrance channel, marked by private markers on the north side, leads across flats to the mouth of the creek. In 1983, the channel had a controlling depth of 2 feet. Local knowledge is advised. Overhead cables crossing the creek have a minimum clearance of 65 feet.

A dredge offloading facility and booster pump facility are about 1.43 miles northeast of Point San Pedro in about 38°00'22"N., 122°25'53"W. and 38°01'15"N., 122°27'04"W., respectively. The two facilities consist of several pilings with permanently moored barges. A marked, submerged pipeline and power cables connect the two facilities, thence runs northwest to the shoreline in about 38°02'47"N., 122°29'36"W. Mariners are advised to use caution when transiting the area.

Petaluma River enters San Pablo Bay on the northwest side. The city of **Petaluma**, 12 miles above the mouth, is the center of an extensive dairy and egg industry. The river is used by pleasure craft and by barges handling...
gravel, oyster shell, heavy construction equipment and prestressed concrete products. A dredged channel leads from deep water in San Pablo Bay to the mouth of the Petaluma River and continues upstream to the city of Petaluma.

(391) A privately dredged channel with private markers leads south-southwest from the dredged entrance channel to Petaluma River just below the entrance to the river and thence to Novato Creek. In 1985, the reported controlling depth was 2 feet.

(392) **Danger zones**

(393) Danger zones are in the east part of San Pablo Bay adjacent to the west shore of Mare Island and in the north central part of the bay. (See 33 CFR 334.1160 and 334.1170, chapter 2, for limits and regulations.)

(394) **ENC - US5CA32M**

Chart - 18655

(395) **Mare Island Strait**, at the mouth of the Napa River, is between the mainland and **Mare Island**. The project depth for the Mare Island Strait Channel, from the entrance to just south of the Vallejo-Mare Island Causeway Bridge, about 2.9 miles above the entrance, is 30 feet. For detailed channel information and minimum depths as reported by the U.S. Army Corps of Engineers (USACE), use NOAA Electronic Navigational Charts. Surveys and channel condition reports are available through the USACE hydrographic survey website listed in Appendix A.

(396) The waters around Mare Island are included in a restricted area. (See 33 CFR 334.1100, chapter 2, for limits and regulations.)

(397) A power cable crossing lower Mare Island Strait between Vallejo and Mare Island has a clearance of 206 feet. If the clearance between the masthead and the cable is less than 10 feet or if the clearance is not known, vessels shall not move under the cable without authority.

(398) The entrance to Mare Island Strait is between two dikes. On the east side of the entrance, Dike No. 9 extends about 700 yards southwest from the mainland and on the west side, Dike No. 14 extends about 500 yards southeast from Mare Island; both dikes have submerged outer sections. Dike No. 9 is marked at the outer end by a light and Dike No. 14 is marked at the outer end by a lighted buoy.

(399) **Coast Guard**

(400) **Coast Guard Station Vallejo**, about 2.5 miles above the entrance to Mare Island Strait just below the Vallejo-Mare Island causeway lift bridge, is on the east side of the strait.

(401) **Vallejo**, on the east shore of Mare Island Strait, is the terminus of a railroad. A large flour mill is prominent south of the railroad yard. A passenger ferry operates between Vallejo and San Francisco. Two small-craft facilities are on the east side of the Mare Island Strait.

The Vallejo-Mare Island causeway and lift bridge connects Mare Island with the city of Vallejo. It has a lift span with a clearance of 100 feet up and 13 feet down. (See 33 CFR 117.1 through 117.59 and 117.169, chapter 2, for drawbridge regulations.) The bridge is equipped with radiotelephone. The bridgeworker monitors VHF-FM channel 16 and works on channel 13; voice call, Mare Island Causeway Bridge. Just above Sears Point, 1 mile above Vallejo, a fixed highway bridge with a clearance of 100 feet crosses the strait. A public fishing pier is close south of this bridge and extends about 350 yards from the east side of the strait. A Navy reserve fleet pier is on the west side of the strait between Vallejo-Mare Island causeway lift bridge and the fixed bridge just above Sears Point. If practical, approach the bridges only when running against the current. No passage should be attempted during the periods of peak flood or ebb current.

(402) The Vallejo-Mare Island causeway lift bridge connects Mare Island with the city of Vallejo. It has a lift span with a clearance of 100 feet up and 13 feet down. (See 33 CFR 117.1 through 117.59 and 117.169, chapter 2, for drawbridge regulations.) The bridge is equipped with radiotelephone. The bridgeworker monitors VHF-FM channel 16 and works on channel 13; voice call, Mare Island Causeway Bridge. Just above Sears Point, 1 mile above Vallejo, a fixed highway bridge with a clearance of 100 feet crosses the strait. A public fishing pier is close south of this bridge and extends about 350 yards from the east side of the strait. A Navy reserve fleet pier is on the west side of the strait between Vallejo-Mare Island causeway lift bridge and the fixed bridge just above Sears Point. If practical, approach the bridges only when running against the current. No passage should be attempted during the periods of peak flood or ebb current.

(403) **ENC - US5CA31M**

Chart - 18654

(404) **Napa River**, the continuation of Mare Island Strait above the Vallejo-Mare Island Causeway Bridge, is used by barges and pleasure boats. Barge traffic on the river is in crushed rock, salt, and steel. A dredged channel leads from the causeway bridge to a turning basin at Jacks Bend, thence to the head of navigation at the 3rd Street Bridge in Napa, 13 miles above the causeway bridge. A federal project provides a depth of 10 feet from Horseshoe Bend to the upstream limit of the channel. Napa River is marked to Horseshoe Bend by lights and a daybeacon; above Horseshoe Bend, the river is marked by lights and daybeacons to the 3rd Street Bridge in Napa. A visible wreck, marked by a buoy, is on the east side of the channel just north of Slaughterhouse Point. In 2004, a submerged obstruction was reported in the channel east of Knight Island in about 38°08'16.5"N., 122°16'57.2"W.

The railroad bridge across Napa River at Brazos, about 6.8 miles above the Vallejo-Mare Island Causeway, has a vertical lift span with a clearance of 2 feet down and 97 feet up. When not in use, the drawspan is maintained in the open to navigation position. (See 33 CFR 117.1 through 117.59 and 117.169, chapter 2, for drawbridge regulations.) The channel through the bridge crosses from one bank to the other causing a hazardous condition, particularly for downbound loaded barges, because the direction of the ebb current is as much as 50° from the axis of the channel.

A fixed highway bridge with a clearance of 107 feet crosses the Napa River at Suscol, about 9.7 miles above the Vallejo-Mare Island Causeway. Near Inola, 12 miles above Vallejo-Mare Island Causeway bridge, a fixed highway bridge crosses the river with a clearance of 60 feet. The three fixed bridges
in Napa have a minimum width of 47 feet and a clearance of 3.7 feet. The minimum clearance of the power cables crossing the river below Napa is 125 feet, and in Napa, 40 feet.

A small-craft basin is on the west side of Napa River opposite Bull Island, 8 miles above the Vallejo-Mare Island Causeway, and several other small-craft facilities are elsewhere on the river.

ENC - U55CA42M
Chart - 18656

Six-mile-long Carquinez Strait connects San Pablo and Suisun Bays. For the first 3.5 miles it is a little less than 0.5 mile wide, and then widens to about 1 mile. It is deep throughout with the exception of a small stretch of flats on the north shore, and a small shoal area in the right on the south shore near the east end.

Anchorages

General anchorages are in Carquinez Strait. (See 33 CFR 110.1 and 110.224, chapter 2, for limits and regulations.) Mariners should take note of the cable area that runs through Anchorages 22 and 23, south of Benicia. Also of note are the shallow depths from the disposal area encroaching into Anchorage 21, southwest of the entrance to Mare Island Strait.

ENC - U55CA32M
Chart - 18655

The California State Maritime Academy and pier are in Morrow Cove, on the north shore of the west entrance to Carquinez Strait.

Interstate Route 80 fixed highway bridges cross Carquinez Strait near its west entrance at Semple Point. The channel on each side of the center pier is 998 feet wide; the least clearance is 146 feet through the north span and 132 feet through the south span. Private sound signals are sounded at the bridge; piers and racons are at the center of each span of the east bridge.

Power cables cross the strait 0.3 mile west of the highway bridges and 1.2 miles east of it; the minimum clearance is 179 feet.

Crockett, on the south shore just east of the highway bridges, is built around The California and Hawaiian Sugar Company Refinery. The refinery's wharf has a 2,715-foot face with 2,815 feet of berthing space with dolphins and a deck height of 12 feet. A depth of 30 feet is alongside. Four cranes and a conveyor system serve the wharf, maximum unloading rate is 250 tons per hour each and water is available. The wharf is used for receipt and shipment of sugar products and the transfer of bulk liquid molasses; it is owned and operated by California and Hawaiian Sugar Company.

A marina is on the south shore just west of the highway bridges, and a small-boat basin is in Elliot Cove on the north side of the strait opposite Crockett.

ENC - U55CA44M
Chart - 18657

A light is 130 yards off the south side of Carquinez Strait, 1.5 miles east of Interstate Route 80 fixed highway bridges; a light is off Port Costa, 0.6 mile to the east. On the north side of the strait, a light is on Dillon Point and another is off Benicia Point.

The Defense Fuel Supply Center Support Point, Ozol Oil Wharf, at Ozol, is about 1.6 miles southeast of Port Costa. The 270-foot offshore wharf has 880 feet of berthing space with dolphins. The depth alongside is 37 feet and the deck height is 8 feet. Water and electrical shore power connections are available. The wharf is owned by the U.S. Government and operated by Blaiz Co., Inc.

There are three wharves extending out to deep water at Martinez, 2 miles southeast of Point Carquinez.

The westernmost of these facilities is the municipal fishing pier. A small-boat harbor, protected by breakwaters, is on the east side of the pier. A private light is on the channel end of both breakwaters. In 1994, shoaling to a depth of about 4 feet was reported at the entrance to the marina.

The Shell Oil Company, Martinez Refinery Wharf, is east of the municipal fishing pier. The 900-foot offshore wharf has 1,850 feet of berthing space with dolphins and has a depth of 42 feet alongside decreasing to 39 feet at the west end; the deck height is 15 feet. Water and electrical shore power connections are available. The wharf is owned and operated by the Shell Oil Company and is marked by private lights and a sound signal. A security zone surrounds the wharf. (See 33 CFR 165.1197, chapter 2, for limits and regulations.)

The Tesoro Amorco Pier, Upper and Lower Wharves, are northeast of the Shell Oil Company Wharf. The wharves provide 978 feet of berthing space and have a depth of 35 feet alongside; the deck height is 15 to 17 feet. The wharves are used for the receipt and shipment of petroleum products and for bunkering vessels. The wharves are owned and operated by Tesoro Corporation and are marked by private lights. A security zone surrounds the wharves. (See 33 CFR 165.1197, chapter 2, for limits and regulations.)

Benicia is on the north shore at the east end of Carquinez Strait. Most of the smaller piers around the town are in ruins.

Caution

The bottom of Carquinez Strait south of Benicia Point is sandy and changeable. Strong tides, alongshore currents and seasonal runoff influence the bottom, resulting in a shoaling trend migrating southeast from
the point through much of General Anchorage No. 22. Mariners should use caution in transiting this area, with the expectation of changing depths, possibly shoaler than charted.

A marina, protected by breakwaters, is at Benicia; private lights on the breakwater mark the entrance.

The Port of Benicia is at Army Point at the east end of the town. Highway and railroad connections and water and electrical shore power connections are available at all of the facilities.

Valero-Benicia Refinery (38°02'41"N., 122°07'45"W.): 1,100 feet of berthing space; 40.4 feet alongside; deck height, 15 feet; receipt and shipment of petroleum products; receipt of crude oil; owned and operated by Valero Energy Corporation. A security zone has been established around the wharf. (See 33 CFR 165.1197, chapter 2, for limits and regulations.)

Benicia Port Terminal Berth (38°02'28"N., 122°08'05"W.): 2,404 feet of berthing space; 35 to 40 feet alongside; deck height, 11 to 15 feet; receipt of automobiles and crude oil; receipt and shipment of general cargo; shipment of bagged rice, petroleum coke and petroleum products; owned by Benicia Port Terminal Company and operated by various companies.

Bulls Head Point, just east of the south end of the bridge, shows as a 100-foot rounding hill with numerous towers.

The Plains Products Terminal Wharf is 0.9 miles northeast of the Interstate 680 highway bridge and is marked by four private lights. The wharf has 970 feet of berthing space and a depth of 34 feet alongside and is used for shipping/receiving petroleum products.

The Tesoro Golden Eagle Refinery, Avon Marine Terminal, extends across the flats at Avon, northeast of the Plains Products Terminal Wharf. The wharf has a total berthing space of 1,320 feet with depths of 35-40 feet alongside the channel face; deck height is 19 feet, with 14 feet at the center section. Tankers berth along the channel side of the face and barges along the inshore side of the face. The wharf receives and ships petroleum products and is owned/operated by The Tesoro Refining and Marketing Company. Private lights and sound signals are on the outer ends of the pier. A security zone surrounds the wharf. (See 33 CFR 165.1197, chapter 2, for limits and regulations.)

Suisun Bay is a broad shallow body of water with marshy shores and filled with numerous marshy islands, many of which have been reclaimed and are now under cultivation. It is practically the delta of the Sacramento and San Joaquin Rivers that empty into the east part of the bay. A dredged channel leads from the east end of Carquinez Strait along the southern part of Suisun Bay to the south part of Honker Bay. Another dredged channel leads through New York Slough to the San Joaquin River. The project depths for these channels is 35 feet. For detailed channel information and minimum depths as reported by the U.S. Army Corps of Engineers (USACE), use NOAA Electronic Navigational Charts. Surveys and channel condition reports are available through the USACE hydrographic survey website listed in Appendix A.

The bay is used by many light-draft vessels having local knowledge. It is recommended that large vessels take a pilot if bound above Crockett. For information on obtaining an inland pilot contact the San Francisco Marine Exchange or San Francisco Bar Pilots.

General anchorages are in Suisun Bay. (See 33 CFR 110.1 and 110.224, chapter 2, for limits and regulations.)

Suisun Slough empties into the northwest side of Suisun Bay 5.5 miles north of Benicia. A dredged entrance channel leads from Suisun Bay into the slough; the controlling depth was 6½ feet in 1990. The entrance channel is marked by lights. Above the dredged entrance channel, the river channel had a reported depth of 6.3 feet in 2001, from the mouth to Suisun City, 12 miles above the entrance. Traffic on the slough includes gasoline, jet fuel and residual fuel oil. Petroleum products are barged to an oil distributor at Suisun City. A power cable with a...
A restricted berthing area for Maritime Administration Reserve Fleet vessels is along the west side of Suisun Bay. (See 33 CFR 162.270, chapter 2, for limits and regulations.)

(See 33 CFR 117.1 through 117.59, 117.151, and 117.185, chapter 2, for drawbridge regulations for the bridges over the minor tributaries of Suisun Bay.)

Military Ocean Terminal Concord (MOTCO) is on the south side of the bay. A restricted area has been established along the waterfront of the terminal (See 33 CFR 334.1110, chapter 2, for limits and regulations.) A security zone has also been established around the piers of the terminal. (See 33 CFR 165.1199, chapter 2, for limits and regulations.)

Two adjacent small-craft basins are on the south side of the flats about 1.6 miles east of Middle Point, the east boundary of the Navy weapons station. The basins are connected to the bay by twin canals cut through the flats, though the east basin is shoaled in and not in use. All access is via the west basin, with a reported depth of 6 feet or less.

Pittsburg, on the south side of New York Slough 12 miles east of Suisun Point bridges, is a manufacturing city with several deepwater berths. The PGE-Pittsburg Fuel Pier, about 0.3 mile west of New York Point, is an offshore wharf with 1,070 feet of berthing space, 35 feet alongside, and a deck height of 14 feet. It is used for receiving and transshipping petroleum products.

The Diablo Service Corp. Wharf, about 0.6 mile east of New York Point is an offshore wharf with 1,154 feet of berthing space with dolphins, 35 feet alongside, and deck height of 12 feet. There is a conveyer system and crawler tractors. Rail and highway connections and water and electrical shore-power connections are available. It is owned by Tosco Corp. and is used for the receipt of petroleum coke.

USS-Posco Industries, Pittsburg Wharf, about 1.3 mile east of New York Point, is a 891-foot marginal wharf with depths of 33 feet alongside and a deck height of 11 feet. Three 37½-ton cranes are available, and there are rail and highway connections and water and electrical shore power connections. It is used for receipt of semifinished steel.

The Dow Chemical Co., Pittsburg Plant Wharf, about 2 miles east of New York Point, is an offshore wharf with 672 feet of berthing space with dolphins, 40 feet alongside and a deck height of 20 feet. It is used for shipment and receipt of caustic soda.

Antioch, on the south side of San Joaquin River 16 miles east of Suisun Point bridges, is a manufacturing city with waterborne commerce.

Georgia-Pacific Corp., Antioch Plant Wharf, about 38°00’56"N., 121°47’08"W., is a 197-foot offshore wharf, 780 feet usable with dolphins, with 31 feet alongside and a deck height of 11 feet. A conveyer system is available for the receipt of gypsum rock. Highway connections and water and electrical shore power connections are available.

Gaylord Container Corp., California Mill Wharf, about 0.5 mile east of Kaiser Gypsum Co. Pier, is a 291-foot offshore wharf, 766 total berthing space, with depths of 35 feet alongside. Receipt of miscellaneous dry bulk commodities.

There are also barge facilities at Antioch.

The Fulton Shipyard, on the east edge of the city, has a marine railway that can haul out vessels up to 350 tons for general repairs. The yard repairs auxiliary vessels such as towboats and barges.

Several small-craft facilities are at Pittsburg and Antioch.

The Delta Region, the combined deltas of the San Joaquin and Sacramento Rivers, comprises the feeder rivers, sloughs, and canals that directly or indirectly connect with one or both of the rivers. Hundreds of miles of navigable waterways for small boats are available in the Delta; both local and visiting small craft use these waterways extensively. Common types of pleasure craft peculiar to the Delta include pontoon boats and houseboats, but many conventional powerboats and sailboats use these waters also, especially in summer when San Francisco Bay is foggy and choppy. Some of the more important sloughs are used by tugs and barges.

Bordering the various waterways are levees that are 12 feet or more higher than the land behind them. The levees are built up from dredged material taken from the adjacent waterway, and because of the settlement of the levees, dredging has been done periodically to keep the tops at height and grade. As material is needed for levee work, the dredge pays more attention to the requirements of the levee than to the depth of the channel for navigation purposes. This leaves an uneven bottom. The tops of the levees generally have dirt roads. Tule is often found on the channel side of the levees. Tule is the name given to a tall aquatic plant growth similar to bulrush.
Many public and private small-boat harbors, marinas and boating resorts are spread over the Delta region. All types of facilities and services for small craft are available, though some areas in the Delta are much more developed than others. Groceries are one of the most difficult items to obtain in this region; groceries in any quantity must be obtained from the larger towns on the Sacramento River, at Antioch or Stockton on the San Joaquin River or at one of the larger resorts. Diesel oil is similarly rather scarce, since most craft on these waters use gasoline. Diesel oil may be obtained at the junction of the Mokelumne and San Joaquin Rivers, on the west side of King Island, at or near the cities of Antioch and Stockton, and at Bethel Island.

Some areas in the Delta in which small-craft facilities are especially concentrated are most of the perimeter of Bethel Island (Bethel Tract), 3.4 miles east from Antioch Bridge; the south side of San Joaquin River on both sides of Antioch Bridge; the west side of the Mokelumne River from its junction with the San Joaquin River to Georgiana Slough; and the San Joaquin River from Fourteenmile Slough through Stockton.

Cable ferries

The Sacramento and San Joaquin Rivers, including some of the feeder rivers, sloughs and canals that directly or indirectly connect with one or both of the rivers, are crossed by cable ferries (see charts 18661 and 18662). These ferries in the delta region are guided by cables and sometimes propelled by a cable rig attached to the shore. Cables to the ferries, which extend from both banks of the waterway, may be at, near, or above the water surface. Operating procedures vary and mariners are advised to use extreme caution and seek local knowledge. In 1978, the U.S. Coast Guard advised that cable ferries were not operating in many charted locations in the delta region. These ferries may operate intermittently, so caution is advised while operating in their vicinity. DO NOT ATTEMPT TO PASS A MOVING CABLE FERRY.

Clearances for structures (bridges, cables, pipelines, etc.) across all navigable waterways throughout the Delta Region (except the San Joaquin River) are listed on structure-crossing tables. These tables are located near the waterways being discussed in the text. Mariners are advised that low water datum listed on the tables is mean lower low water at low-river stage; overhead cable clearances reference high water datum. During flood stage levels, bridge and overhead cable clearances may be reduced as much as 29 feet or more. See chapter 1 for more information about bridges and overhead cables.

San Joaquin River

The Sacramento and San Joaquin Rivers, including some of the feeder rivers, sloughs and canals that directly or indirectly connect with one or both of the rivers, are crossed by cable ferries. These ferries in the delta region are guided by cables and sometimes propelled by a cable rig attached to the shore. Cables to the ferries, which extend from both banks of the waterway, may be at, near, or above the water surface. Operating procedures vary and mariners are advised to use extreme caution and seek local knowledge. In 1978, the U.S. Coast Guard advised that cable ferries were not operating in many charted locations in the delta region. These ferries may operate intermittently, so caution is advised while operating in their vicinity. DO NOT ATTEMPT TO PASS A MOVING CABLE FERRY.

Clearances for structures (bridges, cables, pipelines, etc.) across all navigable waterways throughout the Delta Region (except the San Joaquin River) are listed on structure-crossing tables. These tables are located near the waterways being discussed in the text. Mariners are advised that low water datum listed on the tables is mean lower low water at low-river stage; overhead cable clearances reference high water datum. During flood stage levels, bridge and overhead cable clearances may be reduced as much as 29 feet or more. See chapter 1 for more information about bridges and overhead cables.

San Joaquin River rises in the Sierra Nevada, flows 275 miles in a west direction, and enters Suisun Bay through New York Slough. The winding river is navigable for deep-draft vessels to Stockton. The water is generally fresh at Antioch. Major floods in the river valley may occur from November to April, caused by intense general storms of several days’ duration. At the mouth of the river an ordinary flood will cause a rise of 8 feet and an extreme flood a rise of 10 feet in the river level. At Stockton, ordinary flood will cause a rise of 8.5 feet, and extreme flood a rise of 13.5 feet in the river level. The delta of the river is formed of many marshy islands intersected by sloughs and channels. The islands are reclaimed tule and cattail marshes that have been converted to agriculture. Bordering the river are levees that are 12 feet or more higher than the land behind them. Important information regarding inland waterway navigation can be found in 33 CFR 162.205, chapter 2.

Reports of gage heights of the San Joaquin River delta can be obtained from the Sacramento National Weather Service Office at any time. The information is published in the Sacramento Bee and, in addition, is reported on radio broadcasts from station KFBK (1530 kHz) whenever the gage heights are sufficient to be of general interest.

Information on gage heights can also be obtained from the State Department of Water Resources, 1416 9th Street, Sacramento, CA 95814 or by recorded message at 916–653–6416.

A federal project provides for a 35-foot channel from the mouth of the San Joaquin River to a turning basin at Stockton. For detailed channel information and minimum depths as reported by the U.S. Army Corps of Engineers (USACE), use NOAA Electronic Navigational Charts. Surveys and channel condition reports are available through a USACE hydrographic survey website listed in Appendix A.

Anchorages

General and explosives anchorages are in the San Joaquin River on the west side of Sherman Island near the mouth and just north of Venice Cut between Mandeville Island and Venice Island. (See 33 CFR 110.1 and 110.224, chapter 2, for limits and regulations.)

Antioch Bridge (State Route 160), a fixed highway bridge with a clearance of 142 feet at low water and 138 feet at high water, crosses San Joaquin River about 3 miles east of Antioch. There are no other bridges over the main channel below the turning basin at Stockton. Power cables over the main channel of San Joaquin River from the mouth to the turning basin at Stockton have a minimum clearance of 140 feet.
Structures Across the Principal Tributaries of the San Joaquin River

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Location</th>
<th>Clearances (feet)</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mokelumne River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mokelumne River highway swing</td>
<td>swing</td>
<td>38°07'34"N., 121°34’47"W.</td>
<td>100</td>
<td>Vertical</td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>38°07’04"N., 121°24’44"W.</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>38°13’32"N., 121°29’03"W.</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>San Joaquin County highway bridge</td>
<td>removable</td>
<td>38°13’32"N., 121°29’03"W.</td>
<td>58</td>
<td>16 / 13</td>
</tr>
<tr>
<td>North Fork Mokelumne River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Millers Ferry highway bridge</td>
<td>swing</td>
<td>38°13’25"N., 121°30’25"W.</td>
<td>85</td>
<td>15 / 12</td>
</tr>
<tr>
<td>Wilson Bridge/ Deadhorse island bridge</td>
<td>removable</td>
<td>38°13’28"N., 121°30’17"W.</td>
<td>56</td>
<td>14 / 11</td>
</tr>
<tr>
<td>Mokelumne River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interstate 5 highway bridges</td>
<td>fixed</td>
<td>38°15’18"N., 121°26’52"W.</td>
<td>65</td>
<td>24 / 24</td>
</tr>
<tr>
<td>Franklin Road bridge swing</td>
<td>swing</td>
<td>38°15’20"N., 121°26’23"W.</td>
<td>80</td>
<td>21 / 18</td>
</tr>
<tr>
<td>Union Pacific Railroad bridge</td>
<td>swing</td>
<td>38°15’17"N., 121°25’54"W.</td>
<td>61</td>
<td>19 / 16</td>
</tr>
<tr>
<td>Galt-New Hope Road bridge fixed</td>
<td>fixed</td>
<td>38°14’12"N., 121°25’07"W.</td>
<td>62</td>
<td>18 / 2</td>
</tr>
<tr>
<td>Little Potato Slough</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potato Slough bridge swing</td>
<td>swing</td>
<td>38°06’56"N., 121°29’52"W.</td>
<td>100</td>
<td>37 / 35</td>
</tr>
<tr>
<td>Georgiana Slough</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>38°08’47"N., 121°36’03"W.</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>Tyler Island bridge swing</td>
<td>swing</td>
<td>38°09’43"N., 121°35’05"W.</td>
<td>80</td>
<td>13 / 10</td>
</tr>
<tr>
<td>Old River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>38°04’16"N., 121°34’32"W.</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>37°56’57"N., 121°34’53"W.</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>BNSF Railroad bridge bascule</td>
<td>bascule</td>
<td>37°56’24"N., 121°33’36"W.</td>
<td>95 (75 open)</td>
<td>14 / 11</td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>37°55’44"N., 121°33’32"W.</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>State Route 4 highway bridge swing</td>
<td>power</td>
<td>37°53’28"N., 121°34’13"W.</td>
<td>98</td>
<td>16 / 12</td>
</tr>
<tr>
<td>Old River bridge fixed</td>
<td>fixed</td>
<td>37°50’36"N., 121°32’16"W.</td>
<td>24</td>
<td>18 / 14</td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>37°50’36"N., 121°32’16"W.</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>37°50’21"N., 121°32’20"W.</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>37°49’44"N., 121°33’09"W.</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>37°49’08"N., 121°33’15"W.</td>
<td>data unavailable</td>
<td></td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>37°48’54"N., 121°33’11"W.</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>37°47’26"N., 121°30’51"W.</td>
<td>data unavailable</td>
<td></td>
</tr>
<tr>
<td>Tracy Boulevard bridge fixed</td>
<td>fixed</td>
<td>37°48’16"N., 121°28’59"W.</td>
<td>46</td>
<td>18 / 15</td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>37°48’28"N., 121°24’36"W.</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Junction with San Joaquin River</td>
<td></td>
<td>37°48’30”N., 121°19’39"W.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacon Island bridge swing</td>
<td>swing</td>
<td>37°57’23”N., 121°31’41”W.</td>
<td>37 (west span)</td>
<td>18 / 15</td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>37°56’33”N., 121°31’57”W.</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>BNSF Railroad bridge bascule</td>
<td>bascule</td>
<td>37°56’23”N., 121°32’00”W.</td>
<td>85 (79 open)</td>
<td>14 / 11</td>
</tr>
</tbody>
</table>
There are small-craft facilities on the south side of the San Joaquin River on both sides of Antioch Bridge. The main channel in San Joaquin River to Stockton is marked by a daybeacon, buoys, lights and lighted ranges. At Mandeville Cut and Venice Cut, 15 miles above Antioch Bridge, the river still follows its old channel and violent sheers are experienced if the navigator is not prepared to meet the river current when passing from the cuts into the river and from the river into the relatively quiet waters of the dredged channel. Under freshet conditions, vessels tend to sheer off course at the junction of the San Joaquin River and the main ship channel at Channel Point near Stockton.

Stockton, 28 miles above Antioch Bridge, is in the center of the fertile San Joaquin Valley. The deep-draft harbor is near the western limits of the city.

Bridges

A fixed highway bridge with a clearance of 45 feet at high water (50 feet at low water) crosses the upper Stockton channel 0.2 mile east of the turning basin.

Weather, Stockton

Stockton, the county seat of San Joaquin County, is near the center of the great Central Valley of California, on the southeast corner of the broad delta formed by the confluence of the San Joaquin and Sacramento Rivers. The surrounding terrain is flat, irrigated farm- and orchard-land, near sea level, with the rivers and canals of the delta controlled by a system of levees.

About 25 miles (46 km) east and northeast of Stockton lie the foothills of the Sierra Nevada, rising gradually to an elevation of about 1,000 feet (305 m). Beyond the foothills, the mountains rise abruptly to the crest of the Sierra, at a distance of about 75 miles (139 km), with some peaks here exceeding 9,000 feet (2,745 m) in elevation. On a few days during the year, when atmospheric conditions are favorable, the “downslope” effect of a north or northeast wind can bring unseasonably dry weather to the delta area; but on the whole the Sierra Nevada has little or no effect on the weather of San Joaquin County. The Sierra Nevada does affect the area, however, to the extent that the entire economy of the Central Valley depends upon the underground water supplies and rivers which are fed in summer by the melting snows that have piled up during the winter on the windward (west) slopes of the mountains.

To the west and southwest, the Coast Range, with peaks above 2,000 feet (610 m), form a barrier separating the Central Valley from the marine air, which dominates the climate of the coastal communities. Several gaps in the Coast Range in the San Francisco Bay Area, however, permit the passage inland of a sea breeze that fans out into the delta and has a moderating effect on summer heat, with the result that Stockton enjoys slightly cooler summer days than communities in the upper San Joaquin and Sacramento Valleys.
Stockton’s climate is characterized in summer by warm, dry days and relatively cool nights, with clear skies and no rainfall; and in winter by mild temperatures and relatively light rains, with frequent heavy fogs. The annual average temperature is 62°F (16.7°C) with an average daily maximum of 74°F (23.3°C) and an average daily minimum of 49°F (9.4°C).

The annual rainfall averages between 13 and 14 inches (330 to 356 mm), with 90 percent of this precipitation falling in the winter-half year, i.e., November through April. Thunderstorms are infrequent, occurring on 3 or 4 days a year, generally in the spring, and occasionally in summer, although rainfall with summer thunderstorms is negligible. Measurable rain can be expected on about 52 days a year, and rain exceeding 0.5 inch (13 mm) on about 7 days a year. Since the Pacific storms that bring rainfall to this area are associated with above-freezing temperatures (>0°C) at sea-level elevations, snowfall is practically unknown in the Stockton area with trace amounts happening a few times and measurable snowfall happening only one time; February 1976.

In summer, temperatures exceeding 100°F (37.8°C) can be expected on 6 days in July and about 14 days during the entire summer. During these hot afternoons the air is extremely dry, with relative humidities running generally less than 20 percent. Even on these hot days, however, temperatures will fall into the low sixties (16.1° to 17.2°C) at night. In winter the nighttime temperature on clear nights will fall to, or slightly below, freezing (0°C) and will rise in the afternoon into the low fifties (10.6° to 11.7°C). The all-time recorded maximum for Stockton is 114°F (45.5°C), recorded in July 1972, while the all-time minimum is 16°F (-8.9°C), recorded in January 1949. Each month April through October,
Supplies may be had in any quantity, and water is piped to the wharves. Ships may fuel from barges; alongside bunkering of large vessels may be done at the oil terminals in San Pablo Bay and Carquinez Strait.

Pilotage, San Joaquin River

River pilots, commissioned by the Port of Stockton, are obtained by ship’s agents, through the office of the Port of Stockton, or the San Francisco Bar Pilots.

Towage

It has not been necessary for towage companies to operate at this port because all vessels operate under their own power; however, tugs up to 1,200 hp are available.

Quarantine, customs, immigration and agricultural quarantine

Quarantine is enforced in accordance with regulations of the U.S. Public Health Service. (See Public Health Service, chapter 1.)

Wharves

Deep-draft facilities at the Port of Stockton are on the south side of Stockton Deep Water Channel from the junction with the San Joaquin River East to the turning basin (East Complex). All facilities have highway connections, and the facilities operated by the Port of Stockton are served by the ports beltline railroad, which connects with two major railroads. All facilities have water connections and most have electrical. Warehouse storage is available in the port for general merchandise and dry bulk materials. General cargo is usually handled by ships tackle or by shore-side traveling cranes; special handling equipment, if available, is listed under Mechanical Handling Facilities in the table. Shore-based hoisting facilities with lifting capacities to 150 tons are available. Additional rental cranes are available locally. Floating cranes for heavy lifts are available at Alameda.

Supplies

Supplies may be had in any quantity, and water is piped to the wharves. Ships may fuel from barges; alongside bunkering of large vessels may be done at the oil terminals in San Pablo Bay and Carquinez Strait.

Repairs

Some dockside facilities are available here, but major repairs to oceangoing vessels must be done at the drydocks in San Francisco, Oakland, Alameda and Richmond. Several facilities make repairs to small craft; marine railways up to 200-ton capacity are available.

Small-craft facilities

Several small-craft facilities are at Stockton or nearby.

From its junction with Stockton Channel, the river has a controlling depth of about 3 feet for 70 miles to Hills Ferry and is used only by small pleasure craft, fishermen and an occasional small barge. The only facilities available are those dispensing gasoline, lubricants and water at a few points.

More than 15 bridges cross San Joaquin River between Stockton and Hills Ferry. The minimum clearance for bridges crossing the river between Stockton and Mossdale, about 13 miles above Stockton, is 17 feet. (See 33 CFR 117.1 through 117.59 and 117.191, chapter 2, for drawbridge regulations.)

The principal tributaries of the San Joaquin River are described as the river is ascended. Bridge clearances are at low water. (See 33 CFR 117.1 through 117.59, 117.143, 117.150, 117.157, 117.159, 117.161, 117.167, 117.171, 117.175, and 117.183, chapter 2, for drawbridge regulations.)

Threemile Slough meets the San Joaquin River 5.8 miles above Antioch Bridge and joins the Sacramento River at the north end of Decker Island. The slough is a route frequently used by tugs and barges making passage between Sacramento and Stockton. Near the junction with the Sacramento River is a highway lift bridge with clearances of 16 feet down and 110 feet up at low water. The bridge tender monitors VHF-FM channel 16 and works on channel 9; call sign KMI-385, Threemile Slough Bridge. (See 33 CFR 117.1 through 117.49, chapter 2, for drawbridge regulations.)

The Mokelumne River, one of the principal tributaries of the San Joaquin River, rises in the Sierra Nevada and empties into it 11.8 miles above Antioch Bridge. The river separates, 3.5 miles above its mouth, into two branches, the North Mokelumne River (North Fork) and the South Mokelumne River (South Fork). The branches continue in a north direction and rejoin 9 miles north-northeast from the mouth. The river then describes a semicircular route for 7 miles to the north and east to the head of navigation at the Galt-New Hope Bridge.
Structures Across the Sacramento Deep Water Ship Channel, Sacramento River and its Principal Tributaries

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Location</th>
<th>Clearance</th>
<th>Vertical*</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Horizontal</td>
<td>Low / High</td>
<td></td>
</tr>
<tr>
<td>Sacramento River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>38°03'55"N., 121°47'09"W.</td>
<td>119</td>
<td>122 feet</td>
<td>Clearance of 122 feet over ship channel</td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>38°04'56"N., 121°45'10"W.</td>
<td>140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>38°05'07"N., 121°44'45"W.</td>
<td>130</td>
<td>160 feet</td>
<td>Clearance of 160 feet over ship channel</td>
</tr>
<tr>
<td>Rio Vista/State Highway 12 bridge</td>
<td>vertical lift</td>
<td>38°09'31"N., 121°40'57"W.</td>
<td>270</td>
<td>149 / 144</td>
<td>Bridgetender monitors VHF-FM channel 16 and works on channels 9 and 13; call sign KMJ-384, Rio Vista Bridge. (Note 1)</td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>38°10'04"N., 121°37'43"W.</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>38°09'52"N., 121°37'16"W.</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isleton bridge</td>
<td>bascule</td>
<td>38°10'15"N., 121°35'38"W.</td>
<td>200</td>
<td>18 / 15</td>
<td>Bridgetender monitors VHF-FM channel 16 and works on channel 9; call sign KMJ-383, Isleton Bridge. (Note 2)</td>
</tr>
<tr>
<td>Walnut Grove bridge</td>
<td>bascule</td>
<td>38°14'33"N., 121°30'53"W.</td>
<td>198</td>
<td>24 / 21</td>
<td>Bridgetender monitors VHF-FM channel 16 and works on channel 9; call sign KMJ-491, Walnut Grove Bridge. (Note 2)</td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>38°17'34"N., 121°33'45"W.</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paintersville bridge</td>
<td>bascule</td>
<td>38°19'07"N., 121°34'40"W.</td>
<td>198</td>
<td>27 / 24</td>
<td>Bridgetender monitors VHF-FM channel 16 and works on channel 9; call sign KMJ-381, Paintersville Bridge. (Note 2)</td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>38°20'45"N., 121°32'56"W.</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freeport bridge</td>
<td>bascule</td>
<td>38°22'21"N., 121°30'07"W.</td>
<td>199 (190 open)</td>
<td>32 / 29</td>
<td>Bridgetender monitors VHF-FM channel 16 and works on channel 9; call sign KMJ-490, Freeport Bridge. (Note 2)</td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>38°28'02"N., 121°36'17"W.</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pioneer bridges</td>
<td>fixed</td>
<td>38°34'16"N., 121°30'57"W.</td>
<td>214</td>
<td>84 / 55</td>
<td>58 feet (high water) for middle 165 feet</td>
</tr>
<tr>
<td>Tower bridge</td>
<td>vertical lift</td>
<td>38°34'50"N., 121°30'30"W.</td>
<td>170</td>
<td>32 / 30 (down) 96 / 98 (up)</td>
<td>Bridgetender monitors VHF-FM channel 16 and works on channel 9; call sign KDO-739, Tower Bridge. (Notes 2 and 7)</td>
</tr>
<tr>
<td>I Street bridge</td>
<td>swing</td>
<td>38°35'11"N., 121°30'23"W.</td>
<td>148</td>
<td>32 / 30</td>
<td>Highway and railroad (Note 2)</td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>38°35'11"N., 121°30'23"W.</td>
<td>80 (east draw) 74 (west draw)</td>
<td>58 feet (high water) for middle 165 feet</td>
<td></td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>38°35'34"N., 121°30'23"W.</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junction with American River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhead power cable</td>
<td>power</td>
<td>38°35'50"N., 121°30'32"W.</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bryte Bend bridges</td>
<td>fixed</td>
<td>38°35'33"N., 121°30'28"W.</td>
<td>250</td>
<td>82 / 55</td>
<td>58 feet (high water) for middle 165 feet</td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>38°35'56"N., 121°30'00"W.</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interstate 5 bridges</td>
<td>fixed</td>
<td>38°40'24"N., 121°37'35"W.</td>
<td>175</td>
<td>84 / 55</td>
<td>58 feet (high water) for middle 165 feet</td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>38°47'00"N., 121°37'06"W.</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junction with Feather River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>38°47'06"N., 121°37'16"W.</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhead cables</td>
<td>power</td>
<td>38°45'49"N., 121°41'00"W.</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhead cables</td>
<td>power</td>
<td>38°45'49"N., 121°41'15"W.</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State Highway 113/Knights Landing bridge</td>
<td>bascule</td>
<td>38°48'06"N., 121°43'12"W.</td>
<td>199 (160 open)</td>
<td>23 (low)</td>
<td>Clearances reference the draws of the I Street Swing Bridge (Note 2)</td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>38°48'13"N., 121°43'23"W.</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>38°49'05"N., 121°43'27"W.</td>
<td>124</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>38°51'34"N., 121°43'52"W.</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>38°51'36"N., 121°43'52"W.</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>38°52'58"N., 121°48'12"W.</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>39°00'51"N., 121°49'32"W.</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>39°02'27"N., 121°50'02"W.</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>39°04'00"N., 121°52'13"W.</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>39°04'25"N., 121°53'26"W.</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meridian/State Highway 20 bridge</td>
<td>swing</td>
<td>39°06'44"N., 121°55'04"W.</td>
<td>143</td>
<td>39 / 10</td>
<td>(Note 2)</td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>39°08'45"N., 121°55'04"W.</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhead cable</td>
<td>power</td>
<td>39°10'12"N., 121°56'15"W.</td>
<td>106</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Corps of Engineers project maps for 1978 show the following controlling depths for Mokelumne River: 12 feet from the mouth to the lower junction of the North and South Mokelumne Rivers, thence 7 feet by North Mokelumne River to Snodgrass Slough; thence 2 feet to upper junction of the North and South Mokelumne Rivers; 7 feet from the lower junction by South Mokelumne River to the upper junction; and thence 2 feet to the Galt–New Hope bridge. Mokelumne River is subject to shoaling; local knowledge is advised.

Little Potato Slough (38°06'00"N., 121°29'30"W.) enters the South Fork of the Mokelumne River about 6 miles east of the confluence of the north and south forks and connects the river with other tributaries of the San Joaquin River.

Georgiana Slough enters Mokelumne River about 3 miles above the mouth, and connects that river with the Sacramento River at Walnut Grove. The controlling depth through the slough is about 13 feet. Tugs and barges formerly used the slough in making the run from Sacramento to Stockton, but to avoid the snags and sharp turns they now favor the route through Threemile Slough.

Old River flows into the San Joaquin River about 13 miles above the Antioch Bridge after diverging from the latter river about 38 miles above the bridge. It is the most west branch of the interconnecting tidal channels into which San Joaquin River divides in crossing its delta. Old River has many sloughs and canals that connect with Middle River to the east.
Middle River enters the San Joaquin River 15.3 miles above Antioch Bridge. The river and connecting channels are a part of a complicated network of tidal canals, some natural and some artificial, in the delta of the San Joaquin River. One of the principal channels, Middle River, leaves Old River at the southwest corner of Roberts Island about 7 miles south-southwest of Stockton and roughly parallels Old River to the San Joaquin River. The controlling depth in Middle River is about 6 feet to the Bacon Island swing bridge, about 15.5 miles below the junction with Old River. The channel is not maintained above the bridge, and navigation is obstructed by many snags and shoals.

Cable ferry

Woodward Island Ferry crosses Middle River about 12.5 miles below the junction with Old River. The ferry carries passengers and vehicles and operates from 0800 to 1700 daily. White warning signs, with black letters and orange borders, are posted about 500 feet on either side of the ferry crossing. Flashing red beacons are shown by the ferry when underway. When the ferry is underway, the cables are 6 to 7 feet above the water surface; when docked, the cables are on or within 1 or 2 feet of the bottom. DO NOT ATTEMPT TO PASS A MOVING CABLE FERRY.

Empire Cut enters Middle River about 16.5 miles below the latter’s junction with Old River.

Cable ferries

Mildred Island Ferry crosses Empire Cut about 0.6 mile east of the junction with Middle River. This private cable ferry carries passengers, vehicles and farm equipment and operates during daylight hours. When the ferry is underway, the cables are suspended at an unknown depth below the water surface; when docked, the cables are dropped to the bottom. A sign on each side of the ferry warns of the cables; a flashing red signal is shown when underway. DO NOT ATTEMPT TO PASS A MOVING CABLE FERRY.

Gasoline and fishing supplies may be obtained at the town of Middle River, about 8.5 miles above the mouth.

Little Connection Slough enters the San Joaquin River about 1 mile above the mouth of Middle River.

Cable ferry

Venice Island Ferry crosses Little Connection Slough about 1 mile above the entrance. The ferry carries passengers and vehicles and operates from 0800 to 1700 daily. White warning signs, with black letters and orange borders, are posted about 500 feet on either side of the ferry crossing. Flashing red beacons are shown by the ferry when underway. When the ferry is underway, the cables are 6 to 7 feet above the water surface; when docked, the cables are dropped to the bottom. DO NOT ATTEMPT TO PASS A MOVING CABLE FERRY.

Turner Cut enters the San Joaquin River about 7.5 miles below Stockton and is crossed about 2 miles above the entrance by a highway bridge with a 30-foot retractable span. The bridge is normally maintained in the open position except when it is being crossed by a vehicle.

Sacramento River rises in the Trinity Mountains in north central California, flows south for 325 miles, and enters Suisun Bay on the north side of Sherman Island. Deep-draft vessels follow the lower Sacramento River to Cache Slough, 1.5 miles above Rio Vista Bridge, thence through a deepwater ship channel to Sacramento, a distance of 37 miles above the mouth of the river. Barges and other small craft also use Sacramento River all the way to Sacramento, a distance of 50 miles. Above Sacramento, small craft go to Colusa, 125 miles above the mouth, but there is no regular navigation above this point. Important information regarding inland waterway navigation can be found in 33 CFR 162.205, chapter 2.

Steamboat Slough enters Cache Slough about 1.8 miles above Rio Vista bridge. A cable ferry crosses the Steamboat Slough about 5 miles above the junction with Cache Slough. The ferry carries passengers and vehicles and operates 24 hours daily. When the ferry is underway, the cable is suspended below the water surface at varying depths. When the ferry is docked, the cable is about 5 feet below the surface of the water. Warning signs are posted at the crossing. When underway, the ferry shows flashing red lights. DO NOT ATTEMPT TO PASS A MOVING CABLE FERRY.

Sacramento River Deep Water Ship Channel extends from Suisun Bay through lower Sacramento River, Cache Slough, and a 22-mile land cut to a triangular harbor and turning basin at the Port of Sacramento. The William G. Stone Lock is on the barge canal that once connected the Deep Water Ship Channel with the Sacramento River; the lock is closed to all navigation.

The project depth in the ship channel is 30 feet and is generally maintained. For detailed channel information and minimum depths as reported by the U.S. Army Corps of Engineers (USACE), use NOAA Electronic Navigational Charts. Surveys and channel condition reports are available through the USACE hydrographic survey website listed in Appendix A. The controlling depth in the river route is about 10 feet. Above Sacramento, the controlling depth is about 6 feet to Colusa. The sounding datum is mean lower low water at low-river stage.

Numerous uncharted piles, snags, pumps and pipes, some submerged, may exist along the edges of the river. Mariners are advised to exercise extreme caution while navigating close to the banks of the river.
Currents

Currents in Sacramento River depend on the river stage. During high-river stages, there is little or no flood current and the ebb current is strong to Sacramento. During the dry season a flood current can be carried to Paintersville and from there slack water to Freeport, 30 and 41 miles above the mouth, respectively. At times of extreme low-river stages, flood current may be evident as far as Sacramento. Local knowledge is required to estimate current conditions for a particular time.

Major floods in the Sacramento River valley usually occur from November to April and are generally caused by intense general storms of several days’ duration, the runoff from which may be augmented by the melting of snow in the mountains. At the mouth of the river an ordinary flood will cause a rise of 8 feet and an extreme flood a rise of 10 feet in the river level. At Sacramento, ordinary flood will cause a rise in the river level of 20 feet and extreme flood, a rise of 30 feet.

Reports of gage heights of the Sacramento River can be obtained from the Sacramento National Weather Service Office at any time of the year. The information is published in the Sacramento Bee and, in addition, is reported on the radio broadcast of several days’ duration, the gage heights are of sufficient magnitude to be of general interest. Information on gage heights can also be obtained from the State Department of Water Resources, 901 “P” Street, Sacramento, CA 95814 or by recorded message at 916–651–0725.

The upper 20 miles of Sacramento River Deep Water Ship Channel are free of river current and flood waters. However, the area is still affected by tidal currents.

Weather, Sacramento Valley

The climate of the lower Sacramento Valley is mild, with plenty of sunshine year round. Cloudless skies prevail during the spring, summer and fall. Winter is the rainy season, with measurable amounts falling on about 10 days per month. Snow is rare, since freezing temperatures are rare. The valley is protected from most severe winter storms by the mountains to the west, north and east. Sometimes, torrential rains on the slopes can cause flooding along the Sacramento River. The average annual precipitation for the Sacramento Airport is about 17.5 inches (445 mm) with about 90% of this amount falling from November through April.

The mountains are responsible for the predominantly south winds throughout the valley. These are oceanic winds that have moved through the Carquinez Strait and been turned north by the Sierra ranges. At the port of Sacramento, southeast through southwest winds prevail, particularly during spring and summer. Northwest through north winds are also frequent and bring warm, dry air down the mountains. These winds cause brief heat waves, with temperatures rising to over 100°F (37.8°C) in summer, and they modify cool weather in winter. Strongest winds occur in winter although gales occur less than 1 percent of the time, even in midwinter. Winds of 17 to 28 knots occur 6 to 10 percent of the time from December through March and less than 5 percent of the time during July, August and September. Extreme winds have reached 60 knots, with gusts of more than 70 knots; these are most likely during fall or winter.

Dense fog is common in winter, infrequent during spring and fall and rare in summer. It is a radiation type fog that occurs during the late night and early morning hours. It usually clears by noon. Occasionally stagnant weather conditions will cause the fog to hang on for a few days. Visibilities at Sacramento drop below 0.5 mile (0.9 km) on about 5 to 10 nights per month, from November through February. During this same period, they fall below 7 miles (13 km) on about 10 to 20 occasions per month. During the summer, visibilities are almost always better than 7 miles (13 km). Twenty-two out of 31 days during each month, December and January, can expect fog. This number drops to less than one day for both June and July.

Routes

The deep-draft channel to the Port of Sacramento through Sacramento River Deep Water Ship Channel is marked with navigational aids.

The shallow-draft route continues in Sacramento River from 1.5 miles above the Rio Vista Lift Bridge to Sacramento, and for the most part is marked by leading lights.

From Ida Island for a distance of 3.5 miles upstream there are shifting shoals. After passing Ida Island work gradually over to the west half of the channel and favor that side around the next bend. From this point to Clarksburg the channel is clear, and midchannel courses may be followed favoring the falling tide bends. At Clarksburg favor the east shore a little until just past the town, then swing into midchannel again. From just below Freeport the channel is rather shoal and wing dams have been built at several places to scour out the channel. These are covered at high-water stages and may be struck if the shore is approached too closely. By favoring the ebbtide bends no trouble should be encountered from here to Sacramento.

NOTE: Care should be exercised at all times to keep clear of the levees, as most of them are faced with rock that may damage vessels that drag along them.

Pilotage, Sacramento River

River pilots, commissioned by the Port of Sacramento, are arranged for by the ship’s agents but may be obtained through the office of the port of Sacramento or the San Francisco Bar Pilots.

Towage

Tugs up to 1,500 hp are available.
Rio Vista, on the northwest bank, 10.5 miles above the mouth of the Sacramento River, is commercially the most important town below Sacramento. The **Rio Vista Coast Guard Station** is just south of the town. A small-craft harbor on the south side of the town has gasoline, diesel fuel, water and berths available. A 20-ton lift here can handle craft up to 40 feet for hull and engine repairs. A large dredging facility is on the northwest side of the river just north of the Rio Vista Bridge.

Ida Island, on the south bank 13.5 miles above the mouth of the river, is the site of a resort and small-boat basin. Gasoline, water and moorage are available. A full marine service with marine railway can handle vessels up to 40 feet.

Isleton, on the south bank 15 miles above the mouth of the river, has a 140-foot public landing. Gasoline, diesel fuel and some supplies are available in town. A large grain elevator is on the southeast side of the river, 0.75 mile above Isleton.

Walnut Grove, 24 miles above the mouth of the Sacramento River, is at the junction with Georgiana Slough. Public landings are on the southeast and northwest bank of the river at Walnut Grove. Moderate quantities of gasoline, diesel, marine supplies, ice and food may be obtained in town only. **Delta Cross Channel** just north of Walnut Grove is used by small vessels transiting between Sacramento River and Snodgrass Slough when the control gates are open. A wharf with a large wooden boat storage shed is on the east side of the river and can provide gasoline, a pump out station and a boat hoist. A **measured nautical mile** along the northeast side of the river begins 1.2 miles above Walnut Grove.

Courtland, 31 miles above the mouth of the river, has a U.S. Post Office and supplies in moderate quantities; oil, water and ice are available in town; it is reported that gasoline is not available.

At **Clarksburg**, 37.5 miles above the mouth of the river, there are two abandoned oil company landings.

Freeport, 41.5 miles above the mouth of the river, has gasoline. A water intake facility at 38°28'21"N., 121°30'24"W. is marked by four private white lights. A paved highway between Antioch and Sacramento runs along the levee of the river for nearly its entire distance.

Sacramento, the State capital, is the head of navigation for most of the shipping on the river and is a distribution and transportation center for north California and parts of Nevada and Oregon. The **Port of Sacramento**, 79 miles above the Golden Gate Bridge and at the head of the deepwater channel, is an important point for interchange of cargo between rail, highway and water transportation. The port has a 124-metric-ton capacity mobile harbor crane that will handle container cargo.

Weather, Sacramento

The lower Sacramento Valley, where Sacramento is located, enjoys a mild climate and abundance of sunshine throughout the year. Cloudless skies prevail during the summer and largely in the spring and autumn. The summers are remarkably dry, with warm days and pleasant nights. In the winter “rainy season” (December, January, and February) over one-half of the total annual precipitation falls, yet rain in measurable amounts occurs only on about 10 days monthly during winter. Snow is rare since freezing temperatures are rare, with trace amounts falling several times and measurable snowfall having fallen on only one occasion, two inches (51 mm) in February 1976. Mountains surround the valley to the west, north and east. The Sierra Nevada snow fields are only 70 miles east of Sacramento and usually provide a plentiful supply of water in the valley streams during the dry season. Because of the shielding influence of the high mountains around the valley, winter storms reach valley districts in modified form. However, torrential rain and heavy snow frequently fall on the western Sierra slopes, the southern Cascades and to a lesser extent the Coastal Range. As a result, flood conditions occasionally occur along the Sacramento River and its tributaries. Excessive rainfall and damaging windstorms are rare in the valley. The average annual precipitation for the Sacramento Airport is about 17.5 inches (445 mm), with about 90% of this amount falling from November through April.

Prevailing winds at Sacramento are south all year, due to the north-south direction of the valley and the deflecting effect of the towering Sierra Ranges on the prevailing oceanic winds that move through the Carquinez Strait at the junction of the Sacramento and San Joaquin Rivers. No other tidewater gap exists in the coastal mountains to admit marine air into the Sacramento or the San Joaquin Valley. Occasionally a steep northerly barometric pressure gradient develops and air is forced over the Siskiyou Mountains to the north, warmed dynamically with descent, and reaches the valley floor as a warm, dry, northerly flow. These occasionally disagreeable winds, known as “northers” in the valley, are the counterpart of the well-known “chinook” winds of the Rocky Mountains, and they, or modifications of them, produce the pronounced heat waves in summer. Fortunately, they are of infrequent occurrence and produce an unstable atmospheric condition that is usually followed within 2 or 3 days by the normally cool south breezes, especially at night. Summer nights in the lower Sacramento Valley are, with few exceptions, cool and invigorating, the result of a prevailing oceanic influence. While it is true that “northers” cause dry, hot weather for brief periods during the summer, it is equally true they are the modifications
CLIMATOLOGICAL DATA – SACRAMENTO, CALIFORNIA (38°31’N, 121°30’W) 18 feet (5.5 m)

<table>
<thead>
<tr>
<th>WEATHER ELEMENTS</th>
<th>JAN Mean (millibars)</th>
<th>FEB Mean (millibars)</th>
<th>MAR Mean (millibars)</th>
<th>APR Mean (millibars)</th>
<th>MAY Mean (millibars)</th>
<th>JUN Mean (millibars)</th>
<th>JUL Mean (millibars)</th>
<th>AUG Mean (millibars)</th>
<th>SEP Mean (millibars)</th>
<th>OCT Mean (millibars)</th>
<th>NOV Mean (millibars)</th>
<th>DEC Mean (millibars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMPERATURE (°F)</td>
<td>1020.7</td>
<td>1019.1</td>
<td>1017.2</td>
<td>1015.9</td>
<td>1014.0</td>
<td>1012.0</td>
<td>1011.8</td>
<td>1012.2</td>
<td>1012.2</td>
<td>1015.3</td>
<td>1019.0</td>
<td>1020.7</td>
</tr>
<tr>
<td>Mean</td>
<td>45.7</td>
</tr>
<tr>
<td>Mean daily maximum</td>
<td>53.0</td>
</tr>
<tr>
<td>Mean daily minimum</td>
<td>37.8</td>
</tr>
<tr>
<td>Extreme (highest)</td>
<td>70.7</td>
</tr>
<tr>
<td>Extreme (lowest)</td>
<td>20.9</td>
</tr>
<tr>
<td>SEA LEVEL PRESSURE (station pressure reduced to sea level)</td>
<td>1020.7</td>
<td>1019.1</td>
<td>1017.2</td>
<td>1015.9</td>
<td>1014.0</td>
<td>1012.0</td>
<td>1011.8</td>
<td>1012.2</td>
<td>1012.2</td>
<td>1015.3</td>
<td>1019.0</td>
<td>1020.7</td>
</tr>
<tr>
<td>Mean number of days</td>
<td>13</td>
</tr>
<tr>
<td>SNOW</td>
<td>3.7</td>
</tr>
<tr>
<td>CLOUD COVER</td>
<td>3.5</td>
</tr>
<tr>
<td>PRECIPITATION (inches)</td>
<td>1.4</td>
</tr>
<tr>
<td>WIND</td>
<td>5.7</td>
</tr>
</tbody>
</table>

Relative Humidity

- **Average percentage**: 88.3%
- **Mean number of days**: 22
- **Mean amount**: 3.6 inches
- **Greatest amount**: 70 inches

Wind Speed

- **Average direction (percentage of observations)**: 22.8%
- **Mean wind speed**: 6.3 knots

Visibility

- **Mean number of days with fog**: 22
- **Mean amount**: 4.5 feet
- **Greatest amount**: 12.6 feet

T = trace (not measurable) amount of precipitation
Miss, blank or - is a missing value
(569)
of cold waves in the winter. Winter northers, with only a few exceptions, are comparatively warm, drying winds. The average annual temperature for Sacramento is 61°F (16.1°C) with an average maximum of 74°F (23.3°C) and an average minimum of 48°F (8.9°C). The all-time maximum occurred in June 1961 when the mercury climbed to 115°F (46.1°C). The all-time minimum of 18°F (-7.8°C) was recorded in December 1990. Each month, May through October, has seen temperatures in excess of 100°F (37.8°C) while every month, November through April, has recorded temperatures at or below freezing (0°C).

The average annual thunderstorm occurrence is three. They are usually mild and are most likely in February and March. However, they have been documented in each of the twelve months. Snow falls so rarely, and in such small amounts, that its occurrence may be disregarded as a climatic feature. Heavy fog occurs mostly in midwinter, rarely in summer, and seldom in spring or autumn. Light and moderate fog are more frequent and may come anytime during the wet, cold season. The fog is usually the radiational cooling type, and confined to the early morning hours. An occasional winter fog, under stagnant atmospheric conditions, may continue for several days.

Facilities in the Port of Sacramento

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Berthing Space</th>
<th>Depths*</th>
<th>Deck Height</th>
<th>Mechanical Handling Facilities and Storage</th>
<th>Purpose</th>
<th>Owned/Operated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port of Sacramento</td>
<td>38°33'56"N., 121°33'04"W.</td>
<td>840</td>
<td>35</td>
<td>19</td>
<td>• Covered storage (306,000 square feet) • Open storage (27.3 acres)</td>
<td>Shipment of miscellaneous dry bulk commodities</td>
<td>Port of Sacramento</td>
</tr>
<tr>
<td>Berth 7</td>
<td>38°33'53"N., 121°32'58"W.</td>
<td>840</td>
<td>35</td>
<td>19</td>
<td>Covered storage (86,400 square feet)</td>
<td>Receipt and shipment of general cargo</td>
<td>Port of Sacramento</td>
</tr>
<tr>
<td>Berth 6</td>
<td>38°33'50"N., 121°32'54"W.</td>
<td>600</td>
<td>35</td>
<td>19</td>
<td>Open storage (6 acres)</td>
<td>Receipt and shipment of general cargo and miscellaneous dry bulk</td>
<td>Port of Sacramento</td>
</tr>
<tr>
<td>Berth 5</td>
<td>38°33'46"N., 121°32'48"W.</td>
<td>600</td>
<td>35</td>
<td>19</td>
<td>• Silo storage (1.2 million bushels) • Vessel loading spouts</td>
<td>Shipment of grain, feed pellets, miscellaneous dry and liquid bulk</td>
<td>Port of Sacramento/Cargill, Inc.</td>
</tr>
<tr>
<td>Berth 2</td>
<td>38°33'42"N., 121°32'38"W.</td>
<td>600</td>
<td>35</td>
<td>19</td>
<td>Covered storage (86,400 square feet)</td>
<td>Receipt and shipment of general cargo</td>
<td>Port of Sacramento</td>
</tr>
<tr>
<td>Berth 1</td>
<td>38°33'42"N., 121°32'31"W.</td>
<td>613</td>
<td>35</td>
<td>19</td>
<td>• Silo storage (21,500 tons) • Vessel loading spouts</td>
<td>Receipt and shipment of bulk rice</td>
<td>Port of Sacramento</td>
</tr>
</tbody>
</table>

* The depths given above are reported. For information on the latest depths contact the port authorities or the private operators.

Quarantine

Quarantine is enforced in accordance with regulations of the U.S. Public Health Service. (See Public Health Service, chapter 1.)

Coast Guard

Sacramento Coast Guard Air Station is northeast of Sacramento at McClellan Air Force Base.

Harbor regulations

Copies of the harbor regulations are available from the Port of Sacramento located at 1110 West Capital Avenue, West Sacramento, CA 95691.

The port radio station KPB-386 VHF-FM channel 18A is monitored 24 hours a day.

Wharves

The deepwater facilities of the Port of Sacramento consist of six berths, each of which has a berthing length of at least 600 feet with a deck height of 19 feet and reported depths alongside of 35 feet. All berths are served by railroad and highway connections, and all berths have water and electrical shore power connections. General cargo at the port is usually handled by ship’s tackle; mechanical handling equipment, if available, is mentioned in the facilities table. All of these facilities are owned and most are operated by the Sacramento-Yolo Port District.

Supplies

Provisions are available in any quantity. Some marine supplies may be obtained. Fuel oil may be obtained by tank truck or barge. Ships do not normally take on fuel or provisions in Sacramento.

Repairs

There are no repair facilities for large oceangoing vessels in Sacramento; the nearest shipyards with large
drydocks are at Richmond, Oakland, Alameda and San Francisco.

(589) **Small-craft facilities**

There are several small-craft facilities along the Sacramento River at Sacramento. Mariners are advised that there are no facilities serving small craft along the Sacramento Deep Water Ship Channel and at the Port of Sacramento. Once at the head of navigation on the channel, there is no way to pass through the locks to the Sacramento River.

(590)

Communications

Sacramento is served by four railroads, several highways and two airports.

(591)

ENCs - US5CA49M, US5CA9BM
Chart - 18664, 18667

(594) Above Sacramento the prevailing flood conditions are as follows: At Verona at the junction of Feather River, 70 miles above the mouth, 20 feet at ordinary floods and 24 feet at extreme floods; at Colusa, 125 miles above the mouth, 25 feet at ordinary floods and 32 feet at extreme floods.

(595) Between Sacramento and Colusa are numerous warehouses and small landings.

(596) Feather River rises in the Sierra Nevada and empties into Sacramento River at Verona, 18 miles above Sacramento. The river has been improved by snagging and the construction of wing dams at Marysville, 26 miles above the mouth. The controlling depth is usually 3 feet from about February 15 to June 15. Ordinary flood fluctuation is 20 feet, and extreme flood fluctuation is about 25 feet. With the exception of several small privately owned landings, all loading is handled on the banks. There has been no commercial navigation on the Feather River in recent years.

(597)

ENC - US5CA98M
Chart - 18665

(598) Lake Tahoe (39°06'N., 120°00'W.), California-Nevada, is a recreation area almost surrounded by Tahoe, Toiyabe and Eldorado National Forests. Restricted areas established by federal regulations are given in 33 CFR 162.210 and 162.215, chapter 2. Lake Tahoe is to be navigated by leaving all white buoys with orange bands to starboard when transiting in a counterclockwise direction; safe water will always be found toward the center of the lake from these buoys. Information about facilities may be obtained from one of the local offices of the Forest Service, U.S. Department of Agriculture.

(599)

Coast Guard

Lake Tahoe Coast Guard Station is on the west shore of the lake about 1.2 miles northeast of Tahoe City.